High humidity in extremely cold weather can undermine the insulation capability of the clothing, imposing serious life risks. Current clothing insulation technologies have inherent deficiencies in terms of insulation efficiency and humidity adaptability. Here, humidity-stimulated self-heating clothing using aluminum core-liquid metal shell microparticles (Al@LM-MPs) as the filler is reported.
View Article and Find Full Text PDFPrecise manipulation of liquid metal (LM) droplets possesses the potential to enable a wide range of applications in reconfigurable electronics, robotics, and microelectromechanical systems. Although a variety of methods have been explored to actuate LM droplets on a 2D plane, versatile 3D manipulation remains a challenge due to the difficulty in overcoming their heavy weight. Here, foam-core liquid metal (FCLM) droplets that can maintain the surface properties of LM while significantly reducing the density are developed, enabling 3D manipulation in an electrolyte.
View Article and Find Full Text PDF