Publications by authors named "Xuan-Zhang Wang"

Article Synopsis
  • The article discusses the prediction of a ghost surface magnon-plasmon polariton (GSMPP) in antiferromagnets with a graphene layer under an external magnetic field, highlighting its unique frequency characteristics.
  • It outlines two conditions for GSMPP existence: the presence of an external magnetic field and a frequency above the electronic-cyclotron frequency of graphene, forming a triangular frequency-field region.
  • The findings suggest that GSMPP is highly tunable and experimentally verifiable, with potential applications in spintronics and surface optics.
View Article and Find Full Text PDF

We predicted peculiar ghost surface phonon polaritons in biaxially hyperbolic materials, where the two hyperbolic principal axes lie in the plane of propagation. We took the biaxially-hyperbolic α-MoO as one example of the materials to numerically simulate the ghost surface phonon polaritons. We found three unique ghost surface polaritons to appear in three enclosed wavenumber-frequency regions, respectively.

View Article and Find Full Text PDF

We investigated the spin angular momentum (SAM) and nonreciprocity of ghost surface polariton (GSP) at the surface of an antiferromagnet (AF) in the normal geometry, where the AF easy axis and external field (H) both are normal to the AF surface. We found that the dispersion equation is invariant when the inversions of wavevector and external magnetic field, k→-k and H→-H, are taken. However, its polarization and SAM are nonreciprocal.

View Article and Find Full Text PDF

We investigated surface polaritons in a metamaterial composed of polar-crystal layers and antiferromagnetic layers. In a specific geometry, two surface polaritons were predicted, which are a unique ghost surface polariton (GSP) and surface hybrid-polarization polariton (SHP). The two surface polaritons occupy different segments of one smooth dispersion curve and are magnetically tunable.

View Article and Find Full Text PDF

A linearly-polarized radiation can be considered as the superposition of two circularly-polarized components with the same propagating direction and opposite spins. We investigated the splitting between the two spin-components in the reflective beam off the antiferromagnetic surface. The gyromagnetism and surface impedance mismatch cause the difference between the spatial shifts of the two spin-components, i.

View Article and Find Full Text PDF
Article Synopsis
  • The study examines how reflective beams behave at the interface of graphene/hBN metamaterials, focusing on the Goos-Hänchen (GH) and Imbert-Fedorov (IF) shifts.
  • Results indicate that the GH shift is greatly enhanced when light hits at a critical angle close to the Brewster angle, showing high reflectivity.
  • The research suggests that by adjusting factors like chemical potential and angle, the maximum shifts can be tuned, opening new possibilities for innovative nano-optical device development.
View Article and Find Full Text PDF

We investigated Goos-Hänchen (GH) and Imbert-Fedorov (IF) shifts on a uniaxial hyperbolic crystal, where a circularly-polarized beam was incident on the crystal from the free space. The GH- and IF-shifts were analytically obtained and numerically calculated for the hexagonal boron nitride. Our results demonstrate that the GH- and IF-shift spectra are complicated and completely different in and out the hyperbolic frequency-bands (the reststrahlen bands in the infrared region).

View Article and Find Full Text PDF

Three Dyakonov-like polaritons (DLPs) exist at the interface between a hyperbolic material (HM) and a covering medium (CM). Each DLP is a hybridized-polarization surface polariton composed of two evanescent waves on both sides of the interface. We investigated their spin and angular momentum.

View Article and Find Full Text PDF

The reflection and refraction were theoretically investigated for a linearly-polarized wave incident upon the surface of a naturally hyperbolic material. We proposed that this material is uniaxial and possesses two hyperbolic-frequency bands (HB-I and HB-II), whose optical axis is arbitrarily pointed. We paid our attention to reflective and refractive features in the HBs and predicted some extraordinary phenomena.

View Article and Find Full Text PDF

The generation of elliptically polarized electromagnetic wave of an antiferromagnetic (AF)/dielectric sandwiched structure in the terahertz range is studied. The frequency and external magnetic field can change the AF optical response, resulting in the generation of elliptical polarization. An especially useful geometry with high levels of the generation of elliptical polarization is found in the case where an incident electromagnetic wave perpendicularly illuminates the sandwiched structure, the AF anisotropy axis is vertical to the wave-vector and the external magnetic field is pointed along the wave-vector.

View Article and Find Full Text PDF

Motivated by the great advance in graphene hydroxide--a versatile material with various applications--we performed density functional theory (DFT) calculations to study the functionalization of the two-dimensional hexagonal boron nitride (h-BN) sheet with hydroxyl (OH) radicals, which has been achieved experimentally recently. Particular attention was paid to searching for the most favorable site(s) for the adsorbed OH radicals on a h-BN sheet and addressing the roles of OH radical coverage on the stability and properties of functionalized h-BN sheet. The results indicate that, for an individual OH radica, the most stable configuration is that it is adsorbed on the B site of the h-BN surface with an adsorption energy of -0.

View Article and Find Full Text PDF

Density functional theory (DFT) calculations were performed on the NO reduction on the silicon (Si)-doped graphene. The results showed that monomeric NO dissociation is subject to a high barrier and large endothermicity and thus is unlikely to occur. In contrast, it was found that NO can easily be converted into N2O through a dimer mechanism.

View Article and Find Full Text PDF

Recently, the adsorption and dissociation of oxygen molecule on a metal-free catalyst has attracted considerable attention due to the fundamental and industrial importance. In the present work, we have investigated the adsorption and dissociation of O(2) molecule on pristine and silicon-doped graphene, using density functional theory calculations. We found that O(2) is firstly adsorbed on Si-doped graphene by [2+1] or [2+2] cycloaddition, with adsorption energies of -1.

View Article and Find Full Text PDF

Recently, the grafting of polymer chains onto nanotubes has attracted increasing attention as it can potentially be used to enhance the solubility of nanotubes and in the development of novel nanotube-based devices. In this article, based on density functional theory (DFT) calculations, we report the formation of trans-polyacetylene on single-walled carbon-doped boron nitride nanotubes (BNNTs) through their adsorption of a series of C(2)H(2) molecules. The results show that, rather than through [2 + 2] cycloaddition, an individualmolecule would preferentially attach to a carbon-doped BNNT via "carbon attack" (i.

View Article and Find Full Text PDF

Chemical functionalization of graphene provides a promising route to improve its solubility in water and organic solvents as well as modify its electronic properties, thus significantly expanding its potential applications. In this article, by using density functional theory (DFT) methods, we have studied the effects of the chemical functionalization of graphenes via aryne cycloaddition on its properties. We found that the adsorption of an isolated aryne group on the graphene sheet is very weak with the adsorption energy of -0.

View Article and Find Full Text PDF

Recently, capturing or transforming greenhouse gases, such as CO(2) and N(2)O, have attracted considerable interest from the perspective of environmental protection. In the present work, by studying CO(2) and N(2)O adsorption on pristine and calcium (Ca)-decorated fullerenes (C(60)) with density functional theory (DFT) methods, we have evaluated the potential application of this C(60)-based complex for the capture of CO(2) and transformation of N(2)O. The results indicate that the adsorptions of CO(2) and N(2)O molecules on the pristine C(60) are considerably weak accompanied by neglectable charge transfer.

View Article and Find Full Text PDF