Porous materials have attracted great interest in recent years, and a variety of surface modification methods have been developed to endow porous materials with multifunctional applications. Herein, multifunctional porous materials are fabricated based on surface metallization. Metallized sponges with Ag and Cu are highly hydrophobic and are still hydrophobic under oil.
View Article and Find Full Text PDFVarious nanocarriers for photosensitizers have been developed to solve the problems of limiting the clinical utility of photodynamic therapy (PDT); however, to date, no carriers capable of supplying oxygen have been reported. We reported the development of a novel system composed of red blood cell (RBC)-derived vesicles (RDVs) generated by osmotic stress and demonstrated the capacity of RDVs for encapsulating and delivering external cargo into targeted cells due to the cellular uptake of RDVs. In this study, protoporphyrin IX (PpIX)-encapsulated RDVs (PpIX@RDVs) were prepared by the hypotonic incorporation of PpIX into RDVs in an aqueous environment, characterized, and utilized for PDT of cancer.
View Article and Find Full Text PDFNanoparticles with an iron core and gold shell (denoted "Fe@AuÓ") have been reported to limit cancer-cell proliferation and therefore have been proposed as a potential anti-cancer agent. However, the underlying mechanisms are still unknown. In this study, we used flow cytometry, confocal fluorescence microscopy, and transmission electron microscopy to analyse the morphological and functional alterations of mitochondria in cancerous cells and healthy cells when treated with Fe@Au.
View Article and Find Full Text PDF