Publications by authors named "Xuan-Nga Cao"

Background: While speech analysis holds promise for mental health assessment, research often focuses on single symptoms, despite symptom co-occurrences and interactions. In addition, predictive models in mental health do not properly assess the limitations of speech-based systems, such as uncertainty, or fairness for a safe clinical deployment.

Objective: We investigated the predictive potential of mobile-collected speech data for detecting and estimating depression, anxiety, fatigue, and insomnia, focusing on other factors than mere accuracy, in the general population.

View Article and Find Full Text PDF

Patients with Huntington's disease suffer from disturbances in the perception of emotions; they do not correctly read the body, vocal and facial expressions of others. With regard to the expression of emotions, it has been shown that they are impaired in expressing emotions through face but up until now, little research has been conducted about their ability to express emotions through spoken language. To better understand emotion production in both voice and language in Huntington's Disease (HD), we tested 115 individuals: 68 patients (HD), 22 participants carrying the mutant HD gene without any motor symptoms (pre-manifest HD), and 25 controls in a single-centre prospective observational follow-up study.

View Article and Find Full Text PDF

Objectives: Using brief samples of speech recordings, we aimed at predicting, through machine learning, the clinical performance in Huntington's Disease (HD), an inherited Neurodegenerative disease (NDD).

Methods: We collected and analyzed 126 samples of audio recordings of both forward and backward counting from 103 Huntington's disease gene carriers [87 manifest and 16 premanifest; mean age 50.6 (SD 11.

View Article and Find Full Text PDF

Before they even speak, infants become attuned to the sounds of the language(s) they hear, processing native phonetic contrasts more easily than nonnative ones. For example, between 6 to 8 mo and 10 to 12 mo, infants learning American English get better at distinguishing English and [l], as in "rock" vs. "lock," relative to infants learning Japanese.

View Article and Find Full Text PDF

A basic task in first language acquisition likely involves discovering the boundaries between words or morphemes in input where these basic units are not overtly segmented. A number of unsupervised learning algorithms have been proposed in the last 20 years for these purposes, some of which have been implemented computationally, but whose results remain difficult to compare across papers. We created a tool that is open source, enables reproducible results, and encourages cumulative science in this domain.

View Article and Find Full Text PDF