Objectives: Bacterial persisters are a subpopulation of multidrug-tolerant cells capable of surviving and resuming activity after exposure to bactericidal antibiotic concentrations, contributing to relapsing infections and the development of antibiotic resistance. In this study, we challenge the conventional view that persisters are metabolically dormant by providing compelling evidence that an isogenic population of Escherichia coli remains metabolically active in persistence.
Methods: Using transcriptomic analysis, we examined E.
As previously reported, gerP Bacillus subtilis spores were defective in nutrient germination triggered via various germinant receptors (GRs), and the defect was eliminated by severe spore coat defects. The gerP spores' GR-dependent germination had a longer lag time between addition of germinants and initiation of rapid release of spores' dipicolinic acid (DPA), but times for release of >90% of DPA from individual spores were identical for wild-type and gerP spores. The gerP spores were also defective in GR-independent germination by DPA with its associated Ca(2+) divalent cation (CaDPA) but germinated better than wild-type spores with the GR-independent germinant dodecylamine.
View Article and Find Full Text PDF