Publications by authors named "Xuan N Pham"

Sulfur compounds in fuel such as thiophene, benzothiophene and dibenzothiophene are the primary source of SO emissions, leading to environmental pollution and acid rain. In this study, we synthesized a layered oxygen-doped graphitic carbon nitride (OCN) structure and integrated ZnO and TiO nanoparticles onto the OCN surface through a microwave-assisted sol-gel method. The X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) results confirmed a robust interaction between the ZnO and TiO nanoparticles and the oxygen-doped g-CN (OCN) surface, as indicated by the formation of C-N-Ti and C-O-Ti bonds.

View Article and Find Full Text PDF

Aerogels are becoming a promising platform to fabricate photothermal materials for use in solar steam generation (SSG), which have remarkable application potential in solar desalination, due to their excellent thermal management, salt resistance, and considerable water evaporation rate. In this work, a novel photothermal material is fabricated by forming a suspension between sugarcane bagasse fibers (SBF) and poly(vinyl alcohol), tannic acid (TA), and Fe solutions via hydrogen bonds of hydroxyl groups. After freeze drying, the fabricated SBF aerogel-based photothermal (SBFAP) material possesses a 3D interconnected porous microstructure, which could enhance water transportation ability, reduce thermal conductivity, and quickly dissolve salt crystals on the SBFAP surface.

View Article and Find Full Text PDF

Semiconductor-containing porous materials with a well-defined structure could be unique scaffolds for carrying out selective organic transformations driven by visible light. We herein introduce for the first time a heterostructure of silver indium sulfide (AgInS) ternary chalcogenide and a highly porous MIL-101(Cr) metal-organic framework (MOF) synthesised from polyethylene terephthalate plastic waste. Our results demonstrate that AgInS nanoparticles were uniformly attached to each lattice plane of the octahedral MIL-101(Cr) structure, resulting in a nanocomposite with a high distribution of semiconductors in a porous media.

View Article and Find Full Text PDF

Integration between conventional semiconductors and porous materials can enhance electron-hole separation, improving photocatalytic activity. Here, we introduce a heterostructure that was successfully constructed between vanadium pentoxide (VO) and mesoporous SBA-15 using inexpensive halloysite clay as the silica-aluminium source. The composite material with 40% doped VO shows excellent catalytic performance in the oxidative desulphurisation of dibenzothiophene (conversion of 99% with only a minor change after four-cycle tests).

View Article and Find Full Text PDF

Introducing heterostructures to graphitic carbon nitrides (g-CN) can improve the activity of visible-light-driven catalysts for the efficient treatment of multiple toxic pollutants in water. Here, we report for the first time that a complex material can be constructed from oxygen-doped g-CN and a MIL-53(Fe) metal-organic framework using facile hydrothermal synthesis and recycled polyethylene terephthalate from plastic waste. The novel multi-walled nanotube structure of the O-g-CN/MIL-53(Fe) composite, which enables the unique interfacial charge transfer at the heterojunction, showed an obvious enhancement in the separation efficiency of the photochemical electron-hole pairs.

View Article and Find Full Text PDF

In recent years, the green synthesis of nanoparticles via biological processes has attracted considerable attention. Herein, we introduce a facile and green approach for the synthesis of poriferous silver nanoparticles (Ag-NPs) decorated hydroxylapatite (HAp@Ag) nanoparticles with excellent antibacterial properties. All the nanocomposites were fully characterized in the solid state via various techniques such as X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and energy-dispersive X-ray spectrometer (EDX), in which the synthesized Ag-NPs (24 nm in diameter) and their homogeneous incorporation on HAp have been studied by ultraviolet-visible (UV-vis) technique, transmission electron microscopy (TEM), and dynamic light scattering (DLS) analysis.

View Article and Find Full Text PDF