Publications by authors named "XuZong Chen"

The thermalization of an isolated quantum system is described by quantum mechanics and thermodynamics, while these two subjects are still not fully consistent with each other. This leaves a less-explored region where both quantum and thermal effects cannot be neglected, and the ultracold-atom platform provides a suitable and versatile testbed to experimentally investigate these complex phenomena. Here we perform experiments based on ultracold atoms in optical lattices and observe a divergence of thermalization rates of quantum matters when the temperature approaches zero.

View Article and Find Full Text PDF

In the development of the Cold Atom Physics Research Rack (CAPR) on board the Chinese Space Station, the laser system plays a critical role in preparing the all-optical Bose-Einstein condensates (BECs). An all-fiber laser system has been developed for CAPR to provide the required optical fields for atom interaction and to maintain the beam pointing in long-term operation. The laser system integrates a 780 nm fiber laser system and an all-fiber optical control module for sub-Doppler cooling, as well as an all-fiber 1064 nm laser system for evaporative cooling.

View Article and Find Full Text PDF

Ultracold atoms in optical lattices are a flexible and effective platform for quantum precision measurement, and the lifetime of high-band atoms is an essential parameter for the performance of quantum sensors. In this work, we investigate the relationship between the lattice depth and the lifetime of D-band atoms in a triangular optical lattice and show that there is an optimal lattice depth for the maximum lifetime. After loading the Bose-Einstein condensate into D band of optical lattice by shortcut method, we observe the atomic distribution in quasi-momentum space for the different evolution time, and measure the atomic lifetime at D band with different lattice depths.

View Article and Find Full Text PDF

Manipulation of ultracold atoms in optical lattices is one of the optimal ways to observe phase transitions of the Hubbard model which is useful in a variety of condensed-matter systems. Bosonic atoms in this model experience a phase transition from superfluids to Mott insulators by tuning systematic parameters. However, in conventional setups, phase transitions take place over a large range of parameters instead of one critical point due to the background inhomogeneity caused by the Gaussian shape of optical-lattice lasers.

View Article and Find Full Text PDF

We investigated the optomechanical dynamics and explored the quantum phase of a Bose-Einstein condensate in a ring cavity. The interaction between the atoms and the cavity field in the running wave mode induces a semiquantized spin-orbit coupling (SOC) for the atoms. We found that the evolution of the magnetic excitations of the matter field resembles that of an optomechanical oscillator moving in a viscous optical medium, with very good integrability and traceability, regardless of the atomic interaction.

View Article and Find Full Text PDF

Ramping a physical parameter is one of the most common experimental protocols in studying a quantum system, and ramping dynamics has been widely used in preparing a quantum state and probing physical properties. Here, we present a novel method of probing quantum many-body correlation by ramping dynamics. We ramp a Hamiltonian parameter to the same target value from different initial values and with different velocities, and we show that the first-order correction on the finite ramping velocity is universal and path-independent, revealing a novel quantum many-body correlation function of the equilibrium phases at the target values.

View Article and Find Full Text PDF

High-precision sensing of vectorial forces has broad impact on both fundamental research and technological applications such as the examination of vacuum fluctuations and the detection of surface roughness of nanostructures. Recent years have witnessed much progress on sensing alternating electromagnetic forces for the rapidly advancing quantum technology-orders of magnitude improvement has been accomplished on the detection sensitivity with atomic sensors, whereas such high-precision measurements for static electromagnetic forces have rarely been demonstrated. Here, based on quantum atomic matter waves confined by a two-dimensional optical lattice, we perform precision measurement of static electromagnetic forces by imaging coherent wave mechanics in the reciprocal space.

View Article and Find Full Text PDF

Ramsey interferometers have wide applications in science and engineering. Compared with the traditional interferometer based on internal states, the interferometer with external quantum states has advantages in some applications for quantum simulation and precision measurement. Here, we develop a Ramsey interferometry with Bloch states in S- and D-band of a triangular optical lattice for the first time.

View Article and Find Full Text PDF

Compared to other commercial atomic clocks in the time keeping field, the greatest advantage of cesium beam atomic clocks is their superior long-term stability. Compared to magnetic state-selection clocks, optically pumped cesium beam atomic clocks have more interacting atoms, which results in better stability potential. To achieve good long-term stability, we propose methods including stabilization of laser power and reconstruction of circuits.

View Article and Find Full Text PDF

Quantum critical behavior of many-body phase transitions is one of the most fascinating yet challenging questions in quantum physics. Here, we improved the band-mapping method to investigate the quantum phase transition from superfluid to Mott insulators, and we observed the critical behaviors of quantum phase transitions in both the dynamical steady-state-relaxation region and the phase-oscillation region. Based on various observables, two different values for the same quantum critical parameter are observed.

View Article and Find Full Text PDF

In an effort to address integrability breaking in cold gas experiments, we extend the integrable hydrodynamics of the Lieb-Liniger model with two additional components representing the population of atoms in the first and second transverse excited states, thus enabling a description of quasi-1D condensates. Collisions between different components are accounted for through the inclusion of a Boltzmann-type collision integral in the hydrodynamic equation. Contrary to standard generalized hydrodynamics, our extended model captures thermalization of the condensate at a rate consistent with experimental observations from a quantum Newton's cradle setup.

View Article and Find Full Text PDF

As in between liquid and crystal phases lies a nematic liquid crystal, which breaks rotation with preservation of translation symmetry, there is a nematic superfluid phase bridging a superfluid and a supersolid. The nematic order also emerges in interacting electrons and has been found to largely intertwine with multiorbital correlation in high-temperature superconductivity, where Ising nematicity arises from a four-fold rotation symmetry C_{4} broken down to C_{2}. Here, we report an observation of a three-state (Z_{3}) quantum nematic order, dubbed "Potts-nematicity", in a system of cold atoms loaded in an excited band of a hexagonal optical lattice described by an sp^{2}-orbital hybridized model.

View Article and Find Full Text PDF

In this paper, we present a linewidth locking method to control the microwave power in optically pumped cesium-beam frequency standards. The responses of optically pumped cesium-beam tubes and classical cesium-beam tubes are analyzed and compared against the power of the microwave field. Due to the wide probability distribution of atomic velocity resulting from the optical state preparation and detection, the linewidth of the Ramsey pattern is sensitive to the microwave power.

View Article and Find Full Text PDF

This paper proposes a miniature optically pumped cesium-beam atomic frequency standard with a volume of 38.4 l and a weight of 28 kg and examines the main factors that affect its signal-to-noise ratio (SNR). Methods to improve the SNR are proposed, which improve the short-term frequency instability: installing a collimator at the exit of the cesium oven, using the beam fluorescence spectrum with the fiber-coupled output to stabilize the laser frequency, and using the 4-5 cycling transition of the cesium D line for the atomic detection.

View Article and Find Full Text PDF

The frontier of low-temperature physics has advanced to the mid-picokelvin (pK) regime but progress has come to a halt because of the problem of gravity. Ultracold atoms must be confined in some type of potential energy well: if the depth of the well is less than the energy an atom gains by falling through it, the atom escapes. This article reviews ultracold atom research, emphasizing the advances that carried the low-temperature frontier to 450 pK.

View Article and Find Full Text PDF

Ultracold atoms in periodical-driven optical lattices enable us to investigate novel band structures and explore the topology of the bands. In this work, we investigate the impact of the ramping process of the driving signal and propose a simple but effective method to realize desired asymmetric population in momentum distribution by controlling the initial phase of the driving signal. A quasi-momentum oscillation along the shaking direction in the frame of reference co-moving with the lattice is formed, causing the formation of the mix of ground energy band and first excited band in laboratory frame, within the regime that the driving frequency is far less than the coupling frequency between ground band and higher energy bands.

View Article and Find Full Text PDF

To extract useful information about quantum effects in cold atom experiments, one central task is to identify the intrinsic fluctuations from extrinsic system noises of various kinds. As a data processing method, principal component analysis can decompose fluctuations in experimental data into eigenmodes, and give a chance to separate noises originated from different physical sources. In this paper, we demonstrate for Bose-Einstein condensates in one-dimensional optical lattices that the principal component analysis can be applied to time-of-flight images to successfully separate and identify noises from different origins of leading contribution, and can help to reduce or even eliminate noises via corresponding data processing procedures.

View Article and Find Full Text PDF

Sliding phases have been long sought after in the context of coupled XY models, as they are of relevance to various many-body systems such as layered superconductors, freestanding liquid-crystal films, and cationic lipid-DNA complexes. Here we report an observation of a dynamical sliding phase superfluid that emerges in a nonequilibrium setting from the quantum dynamics of a three-dimensional ultracold atomic gas loaded into the P band of a one-dimensional optical lattice. A shortcut loading method is used to transfer atoms into the P band at zero quasimomentum within a very short time duration.

View Article and Find Full Text PDF

We report the first experimental realization of the two-stage crossed beam cooling (TSCBC) method that we proposed in 2013 [L. Wang , J. Phys.

View Article and Find Full Text PDF

The precise calibration of optical lattice depth is an important step in the experiments of ultracold atoms in optical lattices. The Raman-Nath diffraction method, as the most commonly used method of calibrating optical lattice depth, has a limited range of validity and the calibration accuracy is not high enough. Based on multiple pulses Kapitza-Dirac diffraction, we propose and demonstrate a new calibration method by measuring the fully transfer fidelity of the first diffraction order.

View Article and Find Full Text PDF

We report a setup for the deep cooling of atoms in an optical trap. The deep cooling is implemented by eliminating the influence of gravity using specially constructed magnetic coils. Compared to the conventional method of generating a magnetic levitating force, the lower trap frequency achieved in our setup provides a lower limit of temperature and more freedoms to Bose gases with a simpler solution.

View Article and Find Full Text PDF

A new signal-processing method based on an electronic frequency down-conversion technique has been introduced into a sinusoidal phase-modulating, self-mixing interferometer. The developed interferometer employs an electro-optical crystal placed in the external cavity of a He-Ne laser to generate the sinusoidal phase modulation with high modulation rate and ultralow insertion loss. Phase quadrature signals which have been amplitude-modulated by the sine and cosine functions, respectively, of the measured displacement can be extracted from the high-density optical fringes through the use of dual-channel multiplier/filter circuits.

View Article and Find Full Text PDF

Applying the direct simulation Monte Carlo (DSMC) method developed for ultracold Bose-Fermi mixture gases research, we study the sympathetic cooling process of 6Li and 133Cs atoms in a crossed optical dipole trap. The obstacles to producing 6Li Fermi degenerate gas via direct sympathetic cooling with 133Cs are also analyzed, by which we find that the side-effect of the gravity is one of the main obstacles. Based on the dynamic nature of 6Li and 133Cs atoms, we suggest a two-stage cooling process with two pairs of crossed beams in microgravity environment.

View Article and Find Full Text PDF

We investigate the mutiphoton process between different Bloch states in an amplitude modulated optical lattice. In the experiment, we perform the modulation with more than one frequency components, which includes a high degree of freedom and provides a flexible way to coherently control quantum states. Based on the study of single frequency modulation, we investigate the collaborative effect of different frequency components in two aspects.

View Article and Find Full Text PDF

We report a simple and robust Doppler-free spectroscopic technique to stabilize a laser frequency to the atomic transition. By employing Doppler Effect on the atomic beam, we obtained a very stable dispersive signal with a high signal-to-noise ratio and no Doppler-background, which served as an error signal to electronically stabilize a laser frequency without modulation. For validating the performance of this technique, we locked a DFB laser to the (133)Cs D2 line and observed an efficient suppression of the frequency noise and a long-term reduction of the frequency drifts in a laboratory environment.

View Article and Find Full Text PDF