Publications by authors named "XuFeng Qiu"

Transmembrane channel-like (TMC) proteins are expressed throughout the animal kingdom and are thought to encode components of ion channels. Mammals express eight TMCs (mTMC1-8), two of which (mTMC1 and mTMC2) are subunits of mechanotransduction channels. C.

View Article and Find Full Text PDF

The mechanoelectrical transduction (MET) channel of cochlear hair cells is gated by the tip link, but the mechanisms that establish the exquisite force sensitivity of this MET channel are not known. Here, we show that the tetraspan lipoma HMGIC fusion partner-like 5 (LHFPL5) directly couples the tip link to the MET channel. Disruption of these interactions severely perturbs MET.

View Article and Find Full Text PDF

Organisms of all phyla express mechanosensitive ion channels with a wide range of physiological functions. In recent years, several classes of mechanically gated ion channels have been identified. Some of these ion channels are intrinsically mechanosensitive.

View Article and Find Full Text PDF

CIB2 is a Ca- and Mg-binding protein essential for mechanoelectrical transduction (MET) by cochlear hair cells, but not by vestibular hair cells that co-express CIB2 and CIB3. Here, we show that in cochlear hair cells, CIB3 can functionally substitute for CIB2. Using X-ray crystallography, we demonstrate that CIB2 and CIB3 are structurally similar to KChIP proteins, auxiliary subunits of voltage-gated K4 channels.

View Article and Find Full Text PDF

TMC1 and TMC2 (TMC1/2) have been proposed to form the pore of the mechanotransduction channel of cochlear hair cells. Here, we show that TMC1/2 cannot form mechanotransduction channels in cochlear hair cells without TMIE. TMIE binds to TMC1/2, and a TMIE mutation that perturbs TMC1/2 binding abolishes mechanotransduction.

View Article and Find Full Text PDF

The tip link, a filament formed by protocadherin 15 (PCDH15) and cadherin 23, conveys mechanical force from sound waves and head movement to open hair-cell mechanotransduction channels. Tip-link cadherins are thought to have acquired structural features critical for their role in mechanotransduction. Here, we biophysically and structurally characterize the unusual cis-homodimeric architecture of PCDH15.

View Article and Find Full Text PDF

Hair cells in the inner ear convert mechanical stimuli provided by sound waves and head movements into electrical signal. Several mechanically evoked ionic currents with different properties have been recorded in hair cells. The search for the proteins that form the underlying ion channels is still in progress.

View Article and Find Full Text PDF

Vesicle recycling is pivotal for maintaining reliable synaptic signaling, but its basic properties remain poorly understood. Here, we developed an approach to quantitatively analyze the kinetics of vesicle recycling with exquisite signal and temporal resolution at the calyx of Held synapse. The combination of this electrophysiological approach with electron microscopy revealed that ∼80% of vesicles (∼270,000 out of ∼330,000) in the nerve terminal are involved in recycling.

View Article and Find Full Text PDF

Neurotransmitter-containing synaptic vesicle (SV) fusion with the nerve terminal plasma membrane initiates neurotransmission in response to neuronal excitation. Under mild stimulation, the fused vesicular membrane is retrieved via kiss-and-run and/or clathrin-mediated endocytosis, which is sufficient to maintain recycling of SVs. When neurons are challenged with very high stimulation, the number of fused SVs can be extremely high, resulting in significant plasma membrane addition.

View Article and Find Full Text PDF