With the global implementation of wastewater reuse, accurately assessing the soil ecological risk of chiral pollutants from wastewater necessitates a comprehensive understanding of their enantioselective toxicity to soil animals. Ibuprofen (IBU) is the most prevalent chiral pharmaceutical in municipal wastewater. However, its enantioselective toxicity toward soil animals and the underlying mechanism remain largely unknown.
View Article and Find Full Text PDFThe addition of conductive materials (CMs) is an effective strategy for mitigating ammonia inhibition during anaerobic digestion (AD). However, the introduction of CMs can result in increased antibiotic resistance genes (ARGs) pollution, potentially facilitated by enhanced horizontal gene transfer (HGT). The complex dynamics of intracellular and extracellular ARGs (iARGs/eARGs) and the mechanisms underlying their transfer, mediated by CMs, in ammonia-stressed AD systems remain unclear.
View Article and Find Full Text PDFThe inefficient biodegradation and incomplete mineralization of nitrogenous heterocyclic compounds (NHCs) have emerged as a pressing environmental concern. The top-down design offers potential solutions to this issue by targeting improvements in community function, but the ecological linkages between selection strength and the structure and function of desired microbiomes remain elusive. Herein, the integration of metagenomics, culture-based approach, non-targeted metabolite screening and enzymatic verification experiments revealed the effect of enrichment concentration on the top-down designed benzothiazole (BTH, a typical NHC)-degrading consortia.
View Article and Find Full Text PDFResearch on the microbial community and function of the anammox process for environmentally friendly wastewater treatment has achieved certain success, which may mean more universal insights are needed. However, the comprehensive understanding of the anammox process is constrained by the limited taxonomic assignment and functional characterization of anammox microbiota, primarily due to the scarcity of high-quality genomes for most organisms. This study reported a global genome catalog of anammox microbiotas based on numerous metagenomes obtained from both lab- and full-scale systems.
View Article and Find Full Text PDFWaterborne pathogens are threatening public health globally, but profiling multiple human pathogenic bacteria (HPBs) in various polluted environments is still a challenge due to the absence of rapid, high-throughput and accurate quantification tools. This work developed a novel chip, termed the HPB-Chip, based on high-throughput quantitative polymerase chain reactions (HT-qPCR). The HPB-Chip with 33-nL reaction volume could simultaneously complete 10,752 amplification reactions, quantifying 27 HPBs in up to 192 samples with two technical replicates (including those for generating standard curves).
View Article and Find Full Text PDFMinimization of antibiotic resistance genes (ARGs) and potential pathogenic antibiotic-resistant bacteria (PARB) during anaerobic digestion (AD) is significantly impacted by temperature. However, knowledge on how ARGs and PARB respond to temperature transition from thermophilic to mesophilic is limited. Here, we combined metagenomic-based with culture-based approaches and revealed the risks of antimicrobial resistance and pathogenicity during transition from 55 °C to 35 °C for AD, with strategies of sharp (ST, one-step by 20 °C/d) and mild (MT, step-wise by 1 °C/d).
View Article and Find Full Text PDFContamination of rice by the potent neurotoxin methylmercury (MeHg) originates from microbe-mediated Hg methylation in soils. However, the high diversity of Hg methylating microorganisms in soils hinders the prediction of MeHg formation and challenges the mitigation of MeHg bioaccumulation via regulating soil microbiomes. Here we explored the roles of various cropland microbial communities in MeHg formation in the potentials leading to MeHg accumulation in rice and reveal that Geobacteraceae are the key predictors of MeHg bioaccumulation in paddy soil systems.
View Article and Find Full Text PDFBiotoxicity assessment results of environmental waters largely depend on the sample extraction protocols that enrich pollutants to meet the effect-trigger thresholds of bioassays. However, more chemical mixture does not necessarily translate to higher combined biotoxicity. Thus, there is a need to establish the link between chemical extracting efficiency and biotoxicity outcome to standardize extraction methods for biotoxicity assessment of environmental waters.
View Article and Find Full Text PDFTo reveal the impact of chlorination on the high-risk resistome in size-fractionated bacterial community, we employed metagenomic approaches to decipher dynamics of high-risk antibiotic resistance genes (ARGs) and driving mechanisms in the free-living and particle-associated fractions within a full-scale drinking water treatment system. Our results revealed that chlorination significantly increased the relative abundance of high-risk ARGs in the free-living fraction to 0.33 ± 0.
View Article and Find Full Text PDFSimultaneous anammox-denitrification is effectively operated in two types, i.e., the anammox-denitritation (SAD pattern) and the anammox-denitratation (PDA pattern).
View Article and Find Full Text PDFThe biological safety of drinking water plays a crucial role in public health protection. However, research on the drinking water microbiome remains in its infancy, especially little is known about the potentially pathogenic bacteria in and functional characteristics of the microbiome in household tap water that people are directly exposed to. In this study, we used a genomic-centric approach to construct a genetic catalogue of the drinking water microbiome by analysing 116 metagenomic datasets of household tap water worldwide, spanning nine countries/regions on five continents.
View Article and Find Full Text PDFThe risk associated with antibiotic resistance genes (ARGs) in size-fractionated bacterial community during drinking water chlorination remains unclear, and is of paramount importance for risk mitigation through process selection and optimization. This study employed metagenomic approaches to reveal the alterations of ARGs, their potential functions and hosts within the free-living and particle-associated fractions. The total relative abundance of ARGs, mobile genetic elements (MGEs), and virulence factor genes (VFGs) significantly increased in the free-living fraction after chlorination.
View Article and Find Full Text PDFAs the crucial confluences of rivers and lakes, the estuary areas with varied hydrodynamic exchanges intensively affect the bacterioplankton communities, whereas the ecological characteristics of the bacterioplankton in the areas have not been well understood. Here, the distribution patterns and assembly mechanisms of bacterioplankton communities in the estuary areas of the Taihu Lake were investigated using high-throughput sequencing and multivariate statistical analyses. Our results showed obvious seasonal variations in bacterioplankton diversity and community composition, which had significant correlations with water temperature.
View Article and Find Full Text PDFMicrobially driven anaerobic digestion (AD) processes are of immense interest due to their role in the biovalorization of biowastes into renewable energy resources. The function-versatile microbiome, interspecies syntrophic interactions, and trophic-level metabolic pathways are important microbial components of AD. However, the lack of a comprehensive understanding of the process hampers efforts to improve AD efficiency.
View Article and Find Full Text PDFFluoxetine (FLX) and venlafaxine (VEN) are widely used antidepressant pharmaceuticals and were frequently detected in wastewater. Despite incomplete mineralization during biological wastewater treatment processes has been revealed, little is known about their transformation products (TPs) formed in the biological systems. To fill this gap, batch reactors and molecular networking nontarget screening were employed to identify the TPs and explore the transformation pathways of FLX and VEN in wastewater.
View Article and Find Full Text PDFAlthough the presence of antibiotic resistance genes (ARGs) in drinking water and their potential horizontal gene transfer to pathogenic microbes are known to pose a threat to human health, their pollution levels and potential anthropogenic sources are poorly understood. In this study, broad-spectrum ARG profiling combined with machine-learning-based source classification SourceTracker was performed to investigate the pollution sources of ARGs in household drinking water collected from 95 households in 47 cities of eight countries/regions. In total, 451 ARG subtypes belonging to 19 ARG types were detected with total abundance in individual samples ranging from 1.
View Article and Find Full Text PDFWater supply suspension-restoration can occur frequently due to the overhauling of civil infrastructure in developing countries and the shutdown of commercial buildings during the pandemic. For comprehensive insights into the effects of water supply suspension-restoration, this study characterized the variations of the pathogen community composition of the tap water and their infection risk under different water supply scenarios. Metagenomic sequencing revealed a significant change of the human pathogen profiles, among which the most dominant pathogen changed from Pseudomonas aeruginosa (4.
View Article and Find Full Text PDFEfficient management of disguised toxic pollutants (DTPs), which can undergo microbial degradation and convert into more toxic substances, necessitates the collaboration of diverse microbial populations in wastewater treatment plants. However, the identification of key bacterial degraders capable of controlling the toxicity risks of DTPs through division of labor mechanisms in activated sludge microbiomes has received limited attention. In this study, we investigated the key degraders capable of controlling the risk of estrogenicity associated with nonylphenol ethoxylate (NPEO), a representative DTP, in textile activated sludge microbiomes.
View Article and Find Full Text PDFMunicipal sewage treatment plants (MSTPs) are environmental pools for antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which is cause for growing environmental-health concerns. In this study, the effects of different wastewater treatment processes on microbial antibiotic resistance in four MSTPs were investigated. PCR, q-PCR, and molecular cloning integrally indicated that the tetracycline resistance () genes significantly reduced after activated-sludge treatment.
View Article and Find Full Text PDF