Publications by authors named "Xu-xiang Zhang"

With the global implementation of wastewater reuse, accurately assessing the soil ecological risk of chiral pollutants from wastewater necessitates a comprehensive understanding of their enantioselective toxicity to soil animals. Ibuprofen (IBU) is the most prevalent chiral pharmaceutical in municipal wastewater. However, its enantioselective toxicity toward soil animals and the underlying mechanism remain largely unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Excessive reactive oxygen species (ROS) production caused by micro/nanoplastics (MPs/NPs) is toxic to anaerobic microbes, negatively impacting their viability and methane production during anaerobic digestion (AD).
  • The study identified that polypropylene (PP)-MPs/NPs increase concentrations of environmentally persistent free radicals (EPFRs) and hydroxyl radicals (OH), leading to a significant rise in ROS and an up to 50% decrease in methane output at high concentrations of PP-MPs/NPs.
  • Changes in microbial communities were observed, shifting from hydrogenotrophic methanogens to acetoclastic and hydrogenotrophic ones due to their superior ability to cope with ROS-induced stress, along with down
View Article and Find Full Text PDF
Article Synopsis
  • This study explores the previously overlooked role of viruses in microbial phosphate removal in activated sludge (AS) systems.
  • Researchers identified 149 viral genes related to phosphorus cycling, particularly focusing on key genes (ppk1 and ppk2) that play crucial roles in phosphate removal.
  • The findings suggest that viruses not only enhance the phosphate removal capabilities of their host bacteria, but they also show potential for improving wastewater treatment efficiency across various environmental contexts.
View Article and Find Full Text PDF

The addition of conductive materials (CMs) is an effective strategy for mitigating ammonia inhibition during anaerobic digestion (AD). However, the introduction of CMs can result in increased antibiotic resistance genes (ARGs) pollution, potentially facilitated by enhanced horizontal gene transfer (HGT). The complex dynamics of intracellular and extracellular ARGs (iARGs/eARGs) and the mechanisms underlying their transfer, mediated by CMs, in ammonia-stressed AD systems remain unclear.

View Article and Find Full Text PDF

The inefficient biodegradation and incomplete mineralization of nitrogenous heterocyclic compounds (NHCs) have emerged as a pressing environmental concern. The top-down design offers potential solutions to this issue by targeting improvements in community function, but the ecological linkages between selection strength and the structure and function of desired microbiomes remain elusive. Herein, the integration of metagenomics, culture-based approach, non-targeted metabolite screening and enzymatic verification experiments revealed the effect of enrichment concentration on the top-down designed benzothiazole (BTH, a typical NHC)-degrading consortia.

View Article and Find Full Text PDF

Research on the microbial community and function of the anammox process for environmentally friendly wastewater treatment has achieved certain success, which may mean more universal insights are needed. However, the comprehensive understanding of the anammox process is constrained by the limited taxonomic assignment and functional characterization of anammox microbiota, primarily due to the scarcity of high-quality genomes for most organisms. This study reported a global genome catalog of anammox microbiotas based on numerous metagenomes obtained from both lab- and full-scale systems.

View Article and Find Full Text PDF

Waterborne pathogens are threatening public health globally, but profiling multiple human pathogenic bacteria (HPBs) in various polluted environments is still a challenge due to the absence of rapid, high-throughput and accurate quantification tools. This work developed a novel chip, termed the HPB-Chip, based on high-throughput quantitative polymerase chain reactions (HT-qPCR). The HPB-Chip with 33-nL reaction volume could simultaneously complete 10,752 amplification reactions, quantifying 27 HPBs in up to 192 samples with two technical replicates (including those for generating standard curves).

View Article and Find Full Text PDF

Minimization of antibiotic resistance genes (ARGs) and potential pathogenic antibiotic-resistant bacteria (PARB) during anaerobic digestion (AD) is significantly impacted by temperature. However, knowledge on how ARGs and PARB respond to temperature transition from thermophilic to mesophilic is limited. Here, we combined metagenomic-based with culture-based approaches and revealed the risks of antimicrobial resistance and pathogenicity during transition from 55 °C to 35 °C for AD, with strategies of sharp (ST, one-step by 20 °C/d) and mild (MT, step-wise by 1 °C/d).

View Article and Find Full Text PDF

Contamination of rice by the potent neurotoxin methylmercury (MeHg) originates from microbe-mediated Hg methylation in soils. However, the high diversity of Hg methylating microorganisms in soils hinders the prediction of MeHg formation and challenges the mitigation of MeHg bioaccumulation via regulating soil microbiomes. Here we explored the roles of various cropland microbial communities in MeHg formation in the potentials leading to MeHg accumulation in rice and reveal that Geobacteraceae are the key predictors of MeHg bioaccumulation in paddy soil systems.

View Article and Find Full Text PDF

Biotoxicity assessment results of environmental waters largely depend on the sample extraction protocols that enrich pollutants to meet the effect-trigger thresholds of bioassays. However, more chemical mixture does not necessarily translate to higher combined biotoxicity. Thus, there is a need to establish the link between chemical extracting efficiency and biotoxicity outcome to standardize extraction methods for biotoxicity assessment of environmental waters.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how wastewater treatment plants (WWTPs) in China manage estrogenic activity from 30 endocrine-disrupting chemicals (EEDCs) across different seasons, finding significant estrogenic activity in all plants that poses risks in over 37.5% of final effluent samples, especially in colder months.
  • - Phthalates are the most common EEDCs found in wastewater, but estrogens like 17β-estradiol dominate the estrogenic activity, making up about 79.92% of it.
  • - WWTPs generally achieve over 86% removal efficiencies for estrogenic activity and major EEDCs, particularly excelling in bioreactor treatment processes; the study highlights
View Article and Find Full Text PDF

To reveal the impact of chlorination on the high-risk resistome in size-fractionated bacterial community, we employed metagenomic approaches to decipher dynamics of high-risk antibiotic resistance genes (ARGs) and driving mechanisms in the free-living and particle-associated fractions within a full-scale drinking water treatment system. Our results revealed that chlorination significantly increased the relative abundance of high-risk ARGs in the free-living fraction to 0.33 ± 0.

View Article and Find Full Text PDF

Simultaneous anammox-denitrification is effectively operated in two types, i.e., the anammox-denitritation (SAD pattern) and the anammox-denitratation (PDA pattern).

View Article and Find Full Text PDF

The biological safety of drinking water plays a crucial role in public health protection. However, research on the drinking water microbiome remains in its infancy, especially little is known about the potentially pathogenic bacteria in and functional characteristics of the microbiome in household tap water that people are directly exposed to. In this study, we used a genomic-centric approach to construct a genetic catalogue of the drinking water microbiome by analysing 116 metagenomic datasets of household tap water worldwide, spanning nine countries/regions on five continents.

View Article and Find Full Text PDF
Article Synopsis
  • Dietary exposure to methylmercury (MeHg) is harmful to human cognition, particularly through rice consumption, which is a key source of MeHg.
  • Researchers found a unique pathway in rice plants that converts MeHg to inorganic mercury and then releases it as gaseous mercury without needing light or microorganisms.
  • This pathway prevents significant increases in MeHg levels in rice grains, which could otherwise lead to minor IQ drops in newborns and substantial economic losses globally.
View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied how certain bacteria that help remove nitrite adapt to cold temperatures in a special lab setup.
  • They found that different bacteria had varying strengths under short and long-term cold stress, with some doing better than others.
  • The research helps us understand why these bacteria struggle in the cold and could help improve how they work during temperature changes.
View Article and Find Full Text PDF

The risk associated with antibiotic resistance genes (ARGs) in size-fractionated bacterial community during drinking water chlorination remains unclear, and is of paramount importance for risk mitigation through process selection and optimization. This study employed metagenomic approaches to reveal the alterations of ARGs, their potential functions and hosts within the free-living and particle-associated fractions. The total relative abundance of ARGs, mobile genetic elements (MGEs), and virulence factor genes (VFGs) significantly increased in the free-living fraction after chlorination.

View Article and Find Full Text PDF

As the crucial confluences of rivers and lakes, the estuary areas with varied hydrodynamic exchanges intensively affect the bacterioplankton communities, whereas the ecological characteristics of the bacterioplankton in the areas have not been well understood. Here, the distribution patterns and assembly mechanisms of bacterioplankton communities in the estuary areas of the Taihu Lake were investigated using high-throughput sequencing and multivariate statistical analyses. Our results showed obvious seasonal variations in bacterioplankton diversity and community composition, which had significant correlations with water temperature.

View Article and Find Full Text PDF

Microbially driven anaerobic digestion (AD) processes are of immense interest due to their role in the biovalorization of biowastes into renewable energy resources. The function-versatile microbiome, interspecies syntrophic interactions, and trophic-level metabolic pathways are important microbial components of AD. However, the lack of a comprehensive understanding of the process hampers efforts to improve AD efficiency.

View Article and Find Full Text PDF

Fluoxetine (FLX) and venlafaxine (VEN) are widely used antidepressant pharmaceuticals and were frequently detected in wastewater. Despite incomplete mineralization during biological wastewater treatment processes has been revealed, little is known about their transformation products (TPs) formed in the biological systems. To fill this gap, batch reactors and molecular networking nontarget screening were employed to identify the TPs and explore the transformation pathways of FLX and VEN in wastewater.

View Article and Find Full Text PDF

Although the presence of antibiotic resistance genes (ARGs) in drinking water and their potential horizontal gene transfer to pathogenic microbes are known to pose a threat to human health, their pollution levels and potential anthropogenic sources are poorly understood. In this study, broad-spectrum ARG profiling combined with machine-learning-based source classification SourceTracker was performed to investigate the pollution sources of ARGs in household drinking water collected from 95 households in 47 cities of eight countries/regions. In total, 451 ARG subtypes belonging to 19 ARG types were detected with total abundance in individual samples ranging from 1.

View Article and Find Full Text PDF

Water supply suspension-restoration can occur frequently due to the overhauling of civil infrastructure in developing countries and the shutdown of commercial buildings during the pandemic. For comprehensive insights into the effects of water supply suspension-restoration, this study characterized the variations of the pathogen community composition of the tap water and their infection risk under different water supply scenarios. Metagenomic sequencing revealed a significant change of the human pathogen profiles, among which the most dominant pathogen changed from Pseudomonas aeruginosa (4.

View Article and Find Full Text PDF

Efficient management of disguised toxic pollutants (DTPs), which can undergo microbial degradation and convert into more toxic substances, necessitates the collaboration of diverse microbial populations in wastewater treatment plants. However, the identification of key bacterial degraders capable of controlling the toxicity risks of DTPs through division of labor mechanisms in activated sludge microbiomes has received limited attention. In this study, we investigated the key degraders capable of controlling the risk of estrogenicity associated with nonylphenol ethoxylate (NPEO), a representative DTP, in textile activated sludge microbiomes.

View Article and Find Full Text PDF

Municipal sewage treatment plants (MSTPs) are environmental pools for antibiotic resistant bacteria (ARB) and antibiotic resistance genes (ARGs), which is cause for growing environmental-health concerns. In this study, the effects of different wastewater treatment processes on microbial antibiotic resistance in four MSTPs were investigated. PCR, q-PCR, and molecular cloning integrally indicated that the tetracycline resistance () genes significantly reduced after activated-sludge treatment.

View Article and Find Full Text PDF