Publications by authors named "Xu-bing Cheng"

Understanding the soil respiration characteristics in response to nitrogen and phosphorus addition in farming-withdrawn grasslands within semi-arid loess hilly-gully regions is of great importance for providing a theoretical basis for evaluating the effects of artificial regulation approaches on carbon cycling. We report on a field experiment that was undertaken from May to September 2018 in a farming-withdrawn grassland ecosystem in China, which is dominated by and . Three different levels of nitrogen and phosphorus additions were used, including three main plots of N[0, 50, and 100 kg·(hm·a)] and three subplots of P (PO)[0,40, and 80 kg·(hm·a)].

View Article and Find Full Text PDF

To analyze plant functional traits of dominant species to nitrogen and phosphorus addition, three species (Bothriochloa ischaemum, Stipa bungeana, and Lespedeza davurica) were selected in the loess hilly-gully region. A split-plot experiment which included three N treatments (0, 50, and 100 kg N·hm·a) and three P treatments (0, 40, and 80 kg PO·hm·a) was conducted. At the fast-growing stage, leaf length, leaf width, specific leaf area, leaf dry matter content, leaf N content, leaf P content, and leaf N:P were measured.

View Article and Find Full Text PDF

Taking the dominant tree species Quercus mongolica in natural coniferous-broadleaved mixed forest in Changbai Mountains as test object, this paper studied the variations of leaf dry mass per unit area (LMA), leaf carbon (C), nitrogen (N), and phosphorus (P) contents per unit mass and per unit area, as well as the leaf N and P resorption efficiency and use efficiency at upper and lower canopy positions during growth season (from June to October). In the growth season, and at both upper and lower canopy positions, the LMA and leaf C content per unit area had obvious monthly fluctuation, the leaf N and P contents per unit area had the similar monthly variation trend with the leaf N and P contents per unit mass, but the leaf N and P resorption efficiency per unit mass had no significant difference with the leaf N and P resorption efficiency per unit area. The leaf N resorption efficiency and use efficiency were less affected by canopy position, but the leaf P resorption efficiency and use efficiency were higher at upper canopy than at lower canopy.

View Article and Find Full Text PDF

A better understanding of the growth and interspecific competition of native dominant species under water stress should aid in prediction of succession in plant communities. In addition, such research would guide the selection of appropriate conservation and agricultural utilization of plants in semiarid environments that have not been very well characterized. Biomass production and allocation, relative competitive ability and water use efficiency of one C(4) herbaceous grass (Bothriochloa ischaemum) and one C(3) leguminous subshrub (Lespedeza davurica), both important species from the semiarid Loess Plateau of China, were investigated in a pot-cultivation experiment.

View Article and Find Full Text PDF

Knowledge of soil respiration and photosynthesis under elevated CO(2) is crucial for exactly understanding and predicting the carbon balance in forest ecosystems in a rapid CO(2)-enriched world. Quercus mongolica Fischer ex Ledebour seedlings were planted in open-top chambers exposed to elevated CO(2) (EC = 500 µmol mol(-1)) and ambient CO(2) (AC = 370 µmol mol(-1)) from 2005 to 2008. Daily, seasonal and inter-annual variations in soil respiration and photosynthetic assimilation were measured during 2007 and 2008 growing seasons.

View Article and Find Full Text PDF

Taking two winter wheat (Triticum aestivum L.) cultivars Changwu 135 and Pingliang 40 commonly cultivated in the semi-arid area on Loess Plateau as test materials, and by the method of ecological replacement, a 2-year field experiment was conducted to study the effects of mono- and mixed culture on the grain yield and water use efficiency of the cultivars. The results showed that under mono-culture, Pingliang 40 had a much higher unit area root biomass (367.

View Article and Find Full Text PDF

The diurnal course of photosynthetic rate, transpiration rate, and leaf water potential (psi L) of five plant species in North Shaanxi loess hilly-gully region were measured in dry seasons. Based on the daily maximum photosynthetic and transpiration rates, daily total assimilation and transpiration, and diurnal change characteristics of psi L, the test plants were classified into different eco-adaptation types. Panicum virgatum L.

View Article and Find Full Text PDF