Nan Fang Yi Ke Da Xue Xue Bao
August 2011
Objective: To determine the amount of silver in silver-loaded coral hydroxyapatite (Ag(+)-CHA) bone substitute and its impact on the biocompatibility of this material with mouse embryonic osteoblast cells.
Methods: Ag(+)-CHA was prepared by immersing coral hydroxyapatite in a serial concentration of silver nitrate solutions. The amount of silver in the prepared Ag(+)-CHA was measured by inductively coupled plasma atomic emission spectrometry (ICP-AES).
Zhonghua Wai Ke Za Zhi
September 2010
Objective: To explore the clinical characteristics and treatment methods for complicated atlantoaxial dislocation.
Methods: A retrospective evaluation was done to summarize and analyze the clinical characteristics and complicated factors of 54 patients with complicated atlantoaxial dislocation who could not to be treated effectively by using conventional therapy in our hospital from February 2005 to October 2008. According to different complicated factors, different treatment methods mainly including transoral atlantoaxial reduction plate-III (TARP-III) operation, decompression procedure with deep grinding guided by computer aided design-rapid prototyping (CAD-RP), screw placement technique with CAD-RP guide plate and extensile approach surgery were performed.
In this study, silver-loaded coral hydroxyapatites (SLCHAs) were used as scaffolds for bone tissue engineering. The SLCHAs were prepared by surface adsorption process and ion-exchange reaction between Ca(2+) of coral hydroxyapatite (CHA) and Ag(+) of silver nitrate with different concentrations at room temperature. The properties of the composite SLCHAs were investigated by inductively coupled plasma-atomic emission spectrometry (ICP-AES), scanning electron microscropy (SEM) equipped with backscattered electron detector (BSE), and energy-dispersive X-ray spectrometer (EDS).
View Article and Find Full Text PDF