Publications by authors named "Xu Lijian"

The detection of dopamine is of great significance for human health. Herein, Pd nanoparticles were loaded on Cu nanoplates (Pd/Cu NPTs) by a novel liquid phase reduction method. A novel dopamine (DA) electrochemical sensor based on the Pd NPs/Cu/glass carbon electrode (Pd/Cu NPTs/GCE) was constructed.

View Article and Find Full Text PDF

The burden of rheumatoid arthritis (RA) has gradually elevated, increasing the need for medical resource redistribution. Forecasting RA patient arrivals can be helpful in managing medical resources. However, no relevant studies have been conducted yet.

View Article and Find Full Text PDF

Segmentation of the coronary artery is an important task for the quantitative analysis of coronary computed tomography angiography (CCTA) images and is being stimulated by the field of deep learning. However, the complex structures with tiny and narrow branches of the coronary artery bring it a great challenge. Coupled with the medical image limitations of low resolution and poor contrast, fragmentations of segmented vessels frequently occur in the prediction.

View Article and Find Full Text PDF

Understanding the mechanisms controlling forest carbon accumulation is crucial for predicting and mitigating future climate change. Yet, it remains unclear whether the dominance of ectomycorrhizal (EcM) trees influences the carbon accumulation of entire forests. In this study, we analyzed forest inventory data from over 4000 forest plots across Northeast China.

View Article and Find Full Text PDF

Pursuing high-performance conductive hydrogels is still hot topic in development of advanced flexible wearable devices. Herein, a tough, self-healing, adhesive double network (DN) conductive hydrogel (named as OSA-(Gelatin/PAM)-Ca, O-(G/P)-Ca) was prepared by bridging gelatin and polyacrylamide network with functionalized polysaccharide (oxidized sodium alginate, OSA) through Schiff base reaction. Thanks to the presence of multiple interactions (Schiff base bond, hydrogen bond, and metal coordination) within the network, the prepared hydrogel showed outstanding mechanical properties (tensile strain of 2800 % and stress of 630 kPa), high conductivity (0.

View Article and Find Full Text PDF

Ubiquitination, a crucial post-translational modification, plays a role in nearly all physiological processes. Its functional execution depends on a series of catalytic reactions involving numerous proteases. TRIM26, a protein belonging to the TRIM family, exhibits E3 ubiquitin ligase activity because of its RING structural domain, and is present in diverse cell lineages.

View Article and Find Full Text PDF

Soybean cyst nematode (SCN), , poses a significant threat to global soybean production. Heilongjiang, the largest soybean-producing province in China, contributes more than 40% to the country's total yield. This province has much longer history of SCN infestation.

View Article and Find Full Text PDF
Article Synopsis
  • Ectopic fat accumulation, particularly in the stomach, contributes to metabolic dysfunction linked to obesity, prompting a study of 190 sleeve gastrectomy patients to examine gastric submucosal fat levels.* -
  • Patients were split into two groups based on the extent of fat accumulation, with significant differences in metabolic risk factors like body mass index (BMI) and insulin resistance (IR) observed between the groups.* -
  • The analysis suggested that higher levels of BMI and IR are associated with increased gastric fat accumulation, with IR identified as an independent risk factor for this condition in obese patients.*
View Article and Find Full Text PDF
Article Synopsis
  • Histopathological images of colorectal liver metastases (CRLM) contain valuable information that can help predict patient outcomes, but there hasn't been a deep learning framework focused on this area until now.
  • The study developed a deep learning system that automates the classification and quantification of important spatial features in H&E-stained images of CRLM, showing robust prognostic value beyond current clinical risk scores.
  • This automated framework could reduce the subjectivity and workload for pathologists, providing a cost-effective tool to improve clinical decision-making for CRLM patients.
View Article and Find Full Text PDF

Biocompatible chitosan-based hydrogels have attracted extensive attention in wound dressing due to their human skin-like tissue characteristics. However, it is a crucial challenge to fabricate chitosan-based hydrogels with versatile properties, including flexibility, stretchability, adhesivity, and antibacterial activity. In this work, a kind of chitosan-based hydrogels with integrated functionalities are facilely prepared by solution polymerization of acrylamide (AAm) and sodium p-styrene sulfonate (SS) in the presence of quaternized carboxymethyl chitosan (QCMCS).

View Article and Find Full Text PDF

Phytopathogens, such as phytopathogenic bacteria, fungi, and nematodes, have caused great losses of crops every year, seriously threatening human health and agricultural production. Moreover, marine-derived fungi are abundant sources of structurally unique and bioactive secondary metabolites that could be potential candidates for anti-phytopathogenic drugs. One new sulfoxide-containing bisabolane sesquiterpenoid aspersydosulfoxide A () and nine known analogues (-) were isolated from the marine-derived LW09.

View Article and Find Full Text PDF

Bacterial infections of the wound surface can be painful for patients, and traditional dressings do not effectively address this problem. In this study, an antimicrobial wound dressing is prepared using a novel antimicrobial peptide, HX-12C. This hydrogel system is based on the natural biomaterials sodium alginate and gelatin, utilizing calcium carbonate as a source of Ca , and ionic cross-linking is facilitated by lowering the solution pH.

View Article and Find Full Text PDF

The emergence of protein hydrogel sensors has attracted intensive attention because of their biocompatibility and biodegradability, and potential application in wearable electronics. However, natural protein hydrogel sensors commonly exhibited low conductivity, weak mechanical strength, and unsatisfactory self-recovery performance. Herein, a fully physical crosslinked conductive BSA-MA-PPy/P(AM-co-AA)/Fe hydrogel based on methacrylic anhydride (MA)-modified and polypyrrole (PPy)-functionalized bovine serum albumin (BSA) introduced into poly(acrylamide-co-acrylic acid) (P(AM-co-AA)) matrix was constructed.

View Article and Find Full Text PDF

Among other health related issues, the rising concerns on drug resistance led to look for alternative pharmaceutical drugs that are effective both against infectious and noninfectious diseases. Antimicrobial peptides (AMPs) emerged as potential therapeutic molecule with wide range of applications. With their limitations, AMPs have gained reputable attentions in research as well as in the pharmaceutical industry.

View Article and Find Full Text PDF

Fungi in forest litter are diverse as decomposers but natural products from these fungi are rarely investigated, especially for their antimicrobial activities against crop diseases. In this study, fungal isolate SGSF723 with antimicrobial activities was cultured. A multi-gene phylogenetic analysis showed SGSF723 was an undescribed species in the family Phaeosphaeriaceae.

View Article and Find Full Text PDF

The mutualistic interactions between mycorrhizae and plants first occurred along with the terrestrialization of plants. The majority of vascular plants are in symbiosis with mycorrhizal fungi. Due to their importance to the economy and ecology, arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) fungi emerge as the most popular ones.

View Article and Find Full Text PDF

Inorganic nanomaterials with enzyme-like activity have been attracting much attention due to their low cost, favorable stability, convenient storage, and simple preparation. Herein, CoO nanoplates with a uniform nanostructure were prepared by the thermolysis of cobalt hydroxide at different temperatures, and the influence of the annealing temperature on the performance of the mimetic enzyme also was reported for the first time. The results demonstrated that CoO nanoplates obtained at an annealing temperature of 200 °C possessed strong oxidase activity and efficiently catalyzed the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) without the addition of hydrogen peroxide to generate the blue color product ox-TMB.

View Article and Find Full Text PDF

Compared with gold and silver, cheap copper has attracted more attention and can potentially be applied in non-enzymatic electrochemical sensors due to its excellent conductivity and catalytic activity. In this paper, copper nanoplates were rapidly synthesized using copper bromide as the copper precursor, polyethyleneimine as the stabilizer, and ascorbic acid as a reducing agent in the presence of silver nanoparticles at a reaction temperature of 90 °C. The Cu nanoplates with an average side length of 10.

View Article and Find Full Text PDF

Norfloxacin (NOR) is an antibiotic commonly used to treat humans and food-producing animals. Owing to NOR abuse, its residues are frequently found in animal-derived food products and the surrounding environment. Therefore, development of an efficient analytical technique for the selective determination of trace NOR is greatly significant for food safety and environmental protection.

View Article and Find Full Text PDF

In this work, a large-scale preparation of graphene oxide (GO) film is reported, and the structure and the compositional variation was studied after thermal annealing. The electromagnetic interference (EMI) shielding performance of thermally reduced GO films was also investigated. Commercial GO clay was well dispersed by high-speed shearing and formed a stable slurry with a high solid content in water (5%), and this was chosen rather than organic solvent due to its optimal performance in coating procedures and film quality.

View Article and Find Full Text PDF

Background: Gastric cancer (GC) is a prevalent cancer with high mortality and strong invasiveness, and the entire regulatory networks of GC is still unclear.

Objective: The aim of this study was to explore the specific mechanism of the effect of nucleolar protein 6 (NOL6) on the proliferation and apoptosis of GC cells.

Methods: The human gastric adenocarcinoma cell line HGC-27 and AGS were cultured.

View Article and Find Full Text PDF

Spiropyran-containing hydrogels that can respond to external stimuli such as temperature, light, and stress have attracted extensive attention in recent years. However, most of them are generally dual or multiple stimuli-responsive to external stimuli, and the interplay of different stimulus responses is harmful to their sensitivity. Herein, spiropyran bearing polymer beads incorporated PAM (poly(AM--MA/DMSP3)) hydrogels with sole mechanochromic properties were synthesized by emulsion polymerization of acrylamide (AM) and methyl acrylate (MA) in the presence of spiropyran dimethacrylate mechanophore (DMSP3) crosslinker.

View Article and Find Full Text PDF

In this work, thin reduced graphene oxide (GO) composite films were fabricated for electromagnetic interference (EMI) shielding application. High solid content GO slurry (7 wt %) was obtained by dispersing GO clay in polymer solution under high-speed mechanical stirring. A composite film with varied thickness (10-150 μm) could be fabricated in pilot scale.

View Article and Find Full Text PDF

This work accompanies the first part of our study "effects of dispersed fibres in myocardial mechanics: Part I passive response" with a focus on myocardial active contraction. Existing studies have suggested that myofibre architecture plays an important role in myocardial active contraction. Following the first part of our study, we firstly study how the general fibre architecture affects ventricular pump function by varying the mean myofibre rotation angles, and then the impact of fibre dispersion along the myofibre direction on myocardial contraction in a left ventricle model.

View Article and Find Full Text PDF

It is widely acknowledged that an imbalanced biomechanical environment can have significant effects on myocardial pathology, leading to adverse remodelling of cardiac function if it persists. Accurate stress prediction essentially depends on the strain energy function which should have competent descriptive and predictive capabilities. Previous studies have focused on myofibre dispersion, but not on fibres along other directions.

View Article and Find Full Text PDF