Cadmium (Cd) is a major environmental pollutant that adversely affects plant growth and productivity, creating a need for effective mitigation strategies. This study aims to evaluate the impact of salicylic acid (SA) priming on the physio-biochemical characteristics of three mung bean varieties (Vigna radiata L.), namely NM-2006, NM-92, and Mash-88, under Cd stress.
View Article and Find Full Text PDFMethane is a pivotal component of the global carbon cycle. It acts both as a potent greenhouse gas and a vital energy source. While the microbial cycling of methane in subsurface environments is crucial, its impact on geological settings and related engineering projects is often underestimated.
View Article and Find Full Text PDFCalcium phosphate cement (CPC) is an injectable bone cement with excellent biocompatibility, widely used for filling bone defects of various shapes. However, its slow degradation, insufficient mechanical strength, and poor osteoinductivity limit its further clinical applications. In this study, we developed a novel composite magnesium-based calcium phosphate cement by integrating magnesium microspheres into PLGA fibers obtained through wet spinning and incorporating these fibers into CPC.
View Article and Find Full Text PDFThis study investigates the novel approach of synergizing desert vegetation with shelter forests to enhance windbreak efficiency in a transitional zone between the Korla oasis and the Taklimakan Desert, northwest China. Through an extensive field survey and experimental setup, we evaluated the impact of different shelterbelt configurations on wind speed reduction. Three types of shelter forests were examined: multi-row Poplar (Populus alba), single-row Jujube (Ziziphus jujube), and a mixed-species layout combining one row of Jujube and two rows of Poplar trees.
View Article and Find Full Text PDFSpinal cord organoids are of significant value in the research of spinal cord-related diseases by simulating disease states, thereby facilitating the development of novel therapies. However, the complexity of spinal cord structure and physiological functions, along with the lack of human-derived inducing components, presents challenges in the in vitro construction of human spinal cord organoids. Here, we introduce a novel human decellularized placenta-derived extracellular matrix hydrogel (DPECMH) and, combined with a new induction protocol, successfully construct human spinal cord organoids.
View Article and Find Full Text PDFThe intricate electrophysiological functions and anatomical structures of spinal cord tissue render the establishment of models for spinal cord-related diseases highly challenging. Currently, both and models for spinal cord-related diseases are still underdeveloped, complicating the exploration and development of effective therapeutic drugs or strategies. Organoids cultured from human induced pluripotent stem cells (hiPSCs) hold promise as suitable models for spinal cord-related diseases.
View Article and Find Full Text PDFNeural tissue engineering is an essential strategy to repair long-segment peripheral nerve defects. Modification of the nerve conduit is an effective way to improve the local microenvironment of the injury site and facilitate nerve regeneration. However, the concurrent release of multiple growth cues that regulate the activity of Schwann cells and neurons remains a challenge.
View Article and Find Full Text PDFModified macroporous structures and active osteogenic substances are necessary to overcome the limited bone regeneration capacity and low degradability of self-curing calcium phosphate cement (CPC). Curcumin (CUR), which possesses strong osteogenic activity and poor aqueous solubility/bioavailability, esterifies the side chains in hyaluronic acid (HA) to form a water-soluble CUR-HA macromolecule. In this study, we incorporated the CUR-HA and glucose microparticles (GMPs) into the CPC powder to fabricate the CUR-HA/GMP/CPC composite, which not only retained the good injectability and mechanical strength of bone cements, but also significantly increased the cement porosity and sustained release property of CUR-HA .
View Article and Find Full Text PDFNeural stem cells (NSCs) are considered to be prospective replacements for neuronal cell loss as a result of spinal cord injury (SCI). However, the survival and neuronal differentiation of NSCs are strongly affected by the unfavorable microenvironment induced by SCI, which critically impairs their therapeutic ability to treat SCI. Herein, a strategy to fabricate PDGF-MP hydrogel (PDGF-MPH) microspheres (PDGF-MPHM) instead of bulk hydrogels is proposed to dramatically enhance the efficiency of platelet-derived growth factor mimetic peptide (PDGF-MP) in activating its receptor.
View Article and Find Full Text PDFCalcium phosphate cement (CPC) has been widely studied, but its lack of osteoinductivity and inadequate mechanical properties limit its application, while strontium is able to promote bone formation and inhibit bone resorption. In this study, different proportions of tristrontium silicate were introduced to create a novel strontium-modified calcium phosphate cement (SMPC). The physicochemical properties of SMPC and CPC were compared, and the microstructures of the bone cements were characterized with scanning electron microscopy assays.
View Article and Find Full Text PDFObjectives: The goal of this study was to determine whether electro-acupuncture (EA) stimulation might protect the motor endplate, minimize muscle atrophy in the hind limbs, and enhance functional recovery of rats with spinal cord injury (SCI).
Methods: Sprague-Dawley adult female rats (n = 30) were randomly assigned into Sham, SCI, and EA + SCI groups (n = 10 each). Rats in the Sham and SCI groups were bound in prone position only for 30 min, and rats in the EA + SCI group were treated with electro-acupuncture.
Spinal cord injury (SCI) induces neuronal death and disrupts the nerve fiber bundles, which leads to partial or complete sensorimotor function loss of the limbs. Transplantation of exogenous neurons derived from stem cells to the lesion site becomes a new neurorestorative strategy for SCI treatment. Spermatogonial stem cells (SSCs) can attain pluripotency features by converting to embryonic stem-like cells .
View Article and Find Full Text PDFAngiogenesis is a fundamental process underlying the occurrence, growth and metastasis of hepatocellular carcinoma (HCC), a prevalent tumour type with an extremely poor prognosis due to abundant vasculature. However, the underlying mechanism of angiogenesis in HCC remains largely unknown. Herein, we found that sphingosine-1-phosphate receptor 1 (S1PR1) plays an important role in HCC angiogenesis.
View Article and Find Full Text PDFA pre folded energy absorbing device, which is the key device of energy absorption anti impact for roadway support, is tested by quasi-static compression and simulated. The energy absorbing device is divided into zones, and the influence of the area on the load displacement curve of the energy absorbing device is studied according to the area. It is found that the error of numerical simulation is within 5%, indicating that the finite element modeling procedure is appropriate for the problem analyzed here.
View Article and Find Full Text PDFInt J Environ Res Public Health
March 2022
Dust storms have already become the most serious environmental problem on the south edge of the Taklimakan desert because of their frequent occurrences. To investigate the health effects of dust storms on public health in Moyu County, one of the most severe dust-storm-affected areas located at the south edge of the Taklimakan desert, China, primary data were collected from 1200 respondents by using a questionnaire survey for 15 health symptoms. The data were analyzed by comparing the mean tool (independent t-test and ANOVA) and the severity of different symptoms among different age groups.
View Article and Find Full Text PDFWhen the rock burst occurs, energy absorption support is an important method to solve the impact failure. To achieve constant resistance performance of energy absorption device, as an important component of the support, the mechanical properties of one kind of prefolded tube is analyzed by quasi-static compression test. The deformation process of compression test is simulated by ABAQUS and plastic strain nephogram of the numerical model are studied.
View Article and Find Full Text PDFEnviron Monit Assess
September 2019
Ecological conservation and restoration have increasingly captured attention worldwide due to the degradation of ecosystems. As one of the most ecologically fragile areas, the Tarim River Basin, of Xinjiang, China, encountered serious decline of desert riparian forests. The Chinese government has implemented the "Ecological Water Conveyance Project" (EWCP) since 2000, protecting and restoring the dominant natural species of the desert riparian forests, i.
View Article and Find Full Text PDFThe ecosystem service value (ESV) can be quantitatively assessed based on changes in ecosystem services. However, few studies have considered two scientific problems: (1) how to quantify the contributions of factors that drive ecosystem services, and (2) how to improve the spatial variability of ESV distributions. In this study, a geographic information system was used to investigate spatial and temporal changes in three factors, i.
View Article and Find Full Text PDFIt is very important to construct a reasonable and efficient basin management system to meet the ecological water demand in arid areas with natural vegetation, and to maintain the integrity and stability of fragile ecosystems. However, how to assess the effect of basin management on ecological protection in arid areas as well as how to achieve the optimal control and efficient use of ecological water are major issues for many researchers and river basin managers. To address these two questions, we investigated the comprehensive management system for the Tarim River basin in China as a typical case study.
View Article and Find Full Text PDF