Publications by authors named "Xu Guang Xi"

Luminescent cyclometallated iridium(III) complexes bearing a 2-formylphenylboronic acid moiety were designed; one of the complexes was utilised to modify peptides containing an N-terminal cysteine to afford luminescent conjugates with selective organelle-targeting or furin-responsive properties.

View Article and Find Full Text PDF

NARROW LEAF1 (NAL1) exerts a multifaceted influence on leaf morphology and crop yield. Recent crystal study proposed that histidine 233 (H233) is part of the catalytic triad. Here we report that unlike suggested previously, H234 instead of H233 is a component of the catalytic triad alongside residues D291 and S385 in NAL1.

View Article and Find Full Text PDF

RNA helicases function as versatile enzymes primarily responsible for remodeling RNA secondary structures and organizing ribonucleoprotein complexes. In our study, we conducted a systematic analysis of the helicase-related activities of Escherichia coli HrpA and presented the structures of both its apo form and its complex bound with both conventional and non-canonical DNAs. Our findings reveal that HrpA exhibits NTP hydrolysis activity and binds to ssDNA and ssRNA in distinct sequence-dependent manners.

View Article and Find Full Text PDF

Photosensitisers for photoimmunotherapy with high spatiotemporal controllability are rare. In this work, we designed rhenium(i) polypyridine complexes modified with a tetrazine unit a bioorthogonally activatable carbamate linker as bioorthogonally dissociative photosensitisers for the controlled induction of immunogenic cell death (ICD). The complexes displayed increased emission intensities and singlet oxygen (O) generation efficiencies upon reaction with -cyclooct-4-enol (TCO-OH) due to the separation of the quenching tetrazine unit from the rhenium(i) polypyridine core.

View Article and Find Full Text PDF

The G-quadruplex (G4) is a distinct geometric and electrophysical structure compared to classical double-stranded DNA, and its stability can impede essential cellular processes such as replication, transcription, and translation. This study focuses on the BsPif1 helicase, revealing its ability to bind independently to both single-stranded DNA (ssDNA) and G4 structures. The unfolding activity of BsPif1 on G4 relies on the presence of a single tail chain, and the covalent continuity between the single tail chain and the G4's main chain is necessary for efficient G4 unwinding.

View Article and Find Full Text PDF

Human DDX5 and its yeast ortholog Dbp2 are ATP-dependent RNA helicases that play a key role in normal cell processes, cancer development, and viral infection. The crystal structure of the RecA1-like domain of DDX5 is available but the global structure of DDX5/Dbp2 subfamily proteins remains to be elucidated. Here, we report the first X-ray crystal structures of the Dbp2 helicase core alone and in complex with ADP at 3.

View Article and Find Full Text PDF

Pif1 proteins are DNA helicases belonging to Superfamily 1, with 5' to 3' directionality. They are conserved from bacteria to human and have been shown to be particularly important in eukaryotes for replication and nuclear and mitochondrial genome stability. However, Pif1 functions in bacteria are less known.

View Article and Find Full Text PDF

Exonucleases are often found associated with polymerase or helicase domains in the same enzyme or can function as autonomous entities to maintain genome stability. Here, we uncovered Chaetomium thermophilum RecQ family proteins that also have exonuclease activity in addition to their main helicase function. The novel exonuclease activity is separate from the helical core domain and coexists with the latter two enzymatic activities on the same polypeptide.

View Article and Find Full Text PDF

G-quadruplexes (G4s) are important in regulating DNA replication, repair and RNA transcription through interactions with specialized proteins. Dbp2 has been identified as a G4 DNA binding protein from Saccharomyces cerevisiae cell lysates. The majority of G4 motifs in Saccharomyces cerevisiae display 5-50 nt loops, only a few have 1-2 nt loops.

View Article and Find Full Text PDF

The coronavirus SARS-CoV-2 has caused a health care crisis all over the world since the end of 2019. Although vaccines and neutralizing antibodies have been developed, rapidly emerging variants usually display stronger immune escape ability and can better surpass vaccine protection. Therefore, it is still vital to find proper treatment strategies.

View Article and Find Full Text PDF

We report herein near-infrared (NIR)-emitting cyclometallated iridium(III) complexes bearing a heteroaromatic methylsulfone moiety as sulfhydryl-specific reagents; one of the complexes was conjugated to cysteine and cysteine-containing peptides and proteins for bioimaging and photocytotoxic applications.

View Article and Find Full Text PDF

Bloom syndrome protein (BLM) is a conserved RecQ family helicase involved in the maintenance of genome stability. BLM has been widely recognized as a genome "caretaker" that processes structured DNA. In contrast, our knowledge of how BLM behaves on single-stranded (ss) DNA is still limited.

View Article and Find Full Text PDF

In recent years, G-quadruplexes (G4s), types of noncanonical four-stranded nucleic acid structures, have been identified in many viruses that threaten human health, such as HIV and Epstein-Barr virus. In this context, G4 ligands were designed to target the G4 structures, among which some have shown promising antiviral effects. In this Perspective, we first summarize the diversified roles of RNA G4s in different viruses.

View Article and Find Full Text PDF
Article Synopsis
  • G-quadruplexes (G4s) are stable DNA structures that can lead to genomic instability, prompting cells to develop proteins like Pif1 to unwind them.
  • The first X-ray crystal structure of the Pif1 helicase from Thermus oshimai (ToPif1) bound to a G4 shows how it recognizes the G4's structure with specific amino acids, maintaining the G4 topology while unfolding it.
  • The study highlights differences in how helicases from various superfamilies, such as SF1 and SF2, utilize distinct mechanisms to interact with and unwind G4 structures.
View Article and Find Full Text PDF

Helicases are multifunctional motor proteins with the primary task of separating nucleic acid duplexes. These enzymes often exist in distinct oligomeric forms and play essential roles during nucleic acid metabolism. Whether there is a correlation between their oligomeric state and cellular function, and how helicases effectively perform functional switching remains enigmatic.

View Article and Find Full Text PDF

I-motifs are noncanonical four-stranded DNA structures formed by C-rich sequences at acidic environment with critical biofunctions. The particular pH sensitivity has inspired the development of i-motifs as pH sensors and DNA motors in nanotechnology. However, the folding and regulation mechanisms of i-motifs remain elusive.

View Article and Find Full Text PDF

Dual detection systems are of interest for rapid, accurate data collection in sensing systems and in vitro testing. We introduce an Ir complex with a boronic acid receptor site attached to the 2-phenylpyridine ligand as an ideal probe with photo- and electrochemical signals that is sensitive to monosaccharide binding in aqueous solution. The complex displays orange luminescence at 618 nm, which is reduced by 70 and 40 % upon binding of fructose and glucose, respectively.

View Article and Find Full Text PDF

Luminescent cyclometallated iridium(III) complexes with a polyhedral oligomeric silsesquioxane (POSS) unit were designed as efficient theranostic agents that displayed tuneable organelle-targeting properties, minimal dark cytotoxicity and substantial photocytotoxicity even under hypoxic conditions.

View Article and Find Full Text PDF

There is broad consensus that RecQ family helicase is a high-order oligomer that dissociates into a dimer upon ATP binding. This conclusion is based mainly on studies of highly purified recombinant proteins, and the oligomeric states of RecQ helicases in living cells remain unknown. We show here that, in contrast to current models, monomeric RECQL helicase is more abundant than oligomer/dimer forms in living cells.

View Article and Find Full Text PDF

G-quadruplex (G4) DNA is a type of quadruple helix structure formed by a continuous guanine-rich DNA sequence. Emerging evidence in recent years authenticated that G4 DNA structures exist both in cell-free and cellular systems, and function in different diseases, especially in various cancers, aging, neurological diseases, and have been considered novel promising targets for drug design. In this review, we summarize the detection method and the structure of G4, highlighting some non-canonical G4 DNA structures, such as G4 with a bulge, a vacancy, or a hairpin.

View Article and Find Full Text PDF

Pif1 helicases, conserved in eukaryotes, are involved in maintaining genome stability in both the nucleus and mitochondria. Here, we report the crystal structure of a truncated Candida Albicans Pif1 (CaPif1) in complex with ssDNA and an ATP analog. Our results show that the Q-motif is responsible for identifying adenine bases, and CaPif1 preferentially utilizes ATP/dATP during dsDNA unwinding.

View Article and Find Full Text PDF

G-quadruplexes (G4s) are non-canonical DNA structures with critical roles in DNA metabolisms. To resolve those structures that can cause replication fork stalling and genomic instability, single-stranded DNA-binding proteins and helicases are required. Here, we characterized the interplay between RPA and helicases on G4s using single-molecule FRET.

View Article and Find Full Text PDF

Telomerase plays critical roles in cellular aging, in the emergence and/or development of cancer, and in the capacity for stem-cell renewal, consists of a catalytic telomerase reverse transcriptase (TERT) and a template-encoding RNA (TER). TERs from diverse organisms contain two conserved structural elements: the template-pseudoknot (T-PK) and a helical three-way junction (TWJ). Species-specific features of the structure and function of telomerase make obtaining a more in-depth understanding of the molecular mechanism of telomerase particularly important.

View Article and Find Full Text PDF

Pif1 is an SF1B helicase that is evolutionarily conserved from bacteria to humans and plays multiple roles in maintaining genome stability in both nucleus and mitochondria. Though highly conserved, Pif1 family harbors a large mechanistic diversity. Here, we report crystal structures of Thermus oshimai Pif1 (ToPif1) alone and complexed with partial duplex or single-stranded DNA.

View Article and Find Full Text PDF

Aging has been considered a phenomenon that can be only applied to cells or organisms. Here, we show that RecQ helicase from E. coli displays an aging phenomenon: this macromolecular motor loses its structure and function after hydrolyzing a certain number of ATP molecules.

View Article and Find Full Text PDF