Currently, nano-titanium dioxide (nTiO) is considered an emerging environmental contaminant. Bottlenecked by the traditional destructive and lethal sampling methods, nTiO's effect in living plants is poorly investigated. Here, in vivo tracing of endogenous salicylic acids at regular intervals was performed by using solid phase microextraction (SPME) technique for evaluating the effects of nTiO on plants.
View Article and Find Full Text PDFAnalysis of organic pollutants is usually accomplished in centralized laboratories. However, the time-delayed and time-consuming process is insufficient and risky for precisely detection due to the contamination of vials, the losses of analytes during transportation and storage. Herein, a rapid and highly sensitive on-site detection approach was developed without using any vials by coupling an on-site pre-equilibrium solid phase microextraction (SPME) sampling method with a portable gas chromatography mass spectrometer (portable GC-MS), for the determination of three families of persistent organic pollutants (polychlorinated biphenyls, organochlorine pesticides and polycyclic aromatic hydrocarbons).
View Article and Find Full Text PDFIn recent years, great concerns have been raised about salicylic acid (SA) and its derivatives as plant regulators. Therefore, precise determination of the distribution of SAs in the living plants is necessary for not only fundamental researches but also the regulating mechanisms. In this study, a custom-made solid phase microextraction (SPME) fiber based on diallyl dimethyl ammonium chloride-assembled graphene oxide-coated C18 composite (C18@GO@PDDA) was proposed for in vivo detection of salicylic acid, acetylsalicylic acid (ASA), 4-methyl salicylic acid(4-SA)and 3-methyl salicylic acid (3-SA) in aloe plants.
View Article and Find Full Text PDFA biocompatible probe for specific glucose recognition is based on photoinitiated boronate affinity-molecular imprinted polymers (BA-MIPs). The unique pre-self-assembly between glucose and boronic acids creates glucose-specific memory cavities in the BA-MIPs coating. As a result, the binding constant toward glucose was enhanced by three orders of magnitude.
View Article and Find Full Text PDFCarbohydrates are known to be involved in a wide range of biological and pathological processes. However, due to the presence of multiple hydroxyl groups, carbohydrate recognition is a particular challenge. Herein, we reported an ultrasensitive solid-phase microextraction (SPME) probe based on phenylboronic acid (PBA) functionalized carbon nanotubes (CNTs) for direct or recognition of carbohydrates in biofluids as well as semi-solid biotissues.
View Article and Find Full Text PDF