Scene recognition is still a very important topic in many fields, and that is definitely the case in robotics. Nevertheless, this task is view-dependent, which implies the existence of preferable directions when recognizing a particular scene. Both in human and computer vision-based classification, this actually often turns out to be biased.
View Article and Find Full Text PDFIn this study we provide the analysis of eye movement behavior elicited by low-level feature distinctiveness with a dataset of synthetically-generated image patterns. Design of visual stimuli was inspired by the ones used in previous psychophysical experiments, namely in free-viewing and visual searching tasks, to provide a total of 15 types of stimuli, divided according to the task and feature to be analyzed. Our interest is to analyze the influences of low-level feature contrast between a salient region and the rest of distractors, providing fixation localization characteristics and reaction time of landing inside the salient region.
View Article and Find Full Text PDFGeneral dynamic scenes involve multiple rigid and flexible objects, with relative and common motion, camera induced or not. The complexity of the motion events together with their strong spatio-temporal correlations make the estimation of dynamic visual saliency a big computational challenge. In this work, we propose a computational model of saliency based on the assumption that perceptual relevant information is carried by high-order statistical structures.
View Article and Find Full Text PDFA hierarchical definition of optical variability is proposed that links physical magnitudes to visual saliency and yields a more reductionist interpretation than previous approaches. This definition is shown to be grounded on the classical efficient coding hypothesis. Moreover, we propose that a major goal of contextual adaptation mechanisms is to ensure the invariance of the behavior that the contribution of an image point to optical variability elicits in the visual system.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
December 2005
In this paper, we present a method for the decomposition of a volumetric image into its most relevant visual patterns, which we define as features associated to local energy maxima of the image. The method involves the clustering of a set of predefined bandpass energy filters according to their ability to segregate the different features in the image, thus generating a set of composite-feature detectors tuned to the specific visual patterns present in the data. Clustering is based on a measure of statistical dependence between pairs of frequency features.
View Article and Find Full Text PDF