Generating organs from stem cells through blastocyst complementation is a promising approach to meet the clinical need for transplants. In order to generate rejection-free organs, complementation of both parenchymal and vascular cells must be achieved, as endothelial cells play a key role in graft rejection. Here, we used a lineage-specific cell ablation system to produce mouse embryos unable to form both the cardiac and vascular systems.
View Article and Find Full Text PDFEach year, tens of thousands of people worldwide die of end-stage organ failure due to the limited availability of organs for use in transplantation. To meet this clinical demand, one of the last frontiers of regenerative medicine is the generation of humanized organs in pigs from pluripotent stem cells (PSCs) via blastocyst complementation. For this, organ-disabled pig models are needed.
View Article and Find Full Text PDFDirect cardiac reprogramming has emerged as an interesting approach for the treatment and regeneration of damaged hearts through the direct conversion of fibroblasts into cardiomyocytes or cardiovascular progenitors. However, in studies with human cells, the lack of reporter fibroblasts has hindered the screening of factors and consequently, the development of robust direct cardiac reprogramming protocols.In this study, we have generated functional human NKX2.
View Article and Find Full Text PDFDirect cardiac reprogramming has emerged as a novel therapeutic approach to treat and regenerate injured hearts through the direct conversion of fibroblasts into cardiac cells. Most studies have focused on the reprogramming of fibroblasts into induced cardiomyocytes (iCMs). The first study in which this technology was described, showed that at least a combination of three transcription factors, GATA4, MEF2C and TBX5 (GMT cocktail), was required for the reprogramming into iCMs in vitro using mouse cells.
View Article and Find Full Text PDFWe have generated two human induced pluripotent stem cell (iPSC) lines from CD133 cells isolated from umbilical cord blood (CB) of a female child using non-integrative Sendai virus. Here we describe the complete characterization of these iPSC lines: PRYDi-CB5 and PRYDi-CB40.
View Article and Find Full Text PDFIslet-1 (Isl1) is a transcription factor essential for life expressed in specific cells with different developmental origins. We have generated iPSC lines from fibroblasts of the transgenic Ai6 x Isl1-Cre (Ai6IslCre) mouse. Here we describe the complete characterization of four iPSC lines: ATCi-Ai6IslCre10, ATCi-Ai6IslCre35, ATCi-Ai6IslCre74 and ATCi-Ai6IslCre80.
View Article and Find Full Text PDFWe generated ATCi-MF1 induced pluripotent stem (iPS) cell line from Macaca fascicularis adult skin fibroblasts using non-integrative Sendai viruses carrying OCT3/4, KLF4, SOX2 and c-MYC. Once established, ATCi-MF1 cells present a normal karyotype, are Sendai virus-free and express pluripotency associated markers. Microsatellite markers analysis confirmed the origin of the iPS cells from the parental fibroblasts.
View Article and Find Full Text PDFInduced pluripotent stem cells (iPSCs) are a powerful tool for disease modeling. They are routinely generated from healthy donors and patients from multiple cell types at different developmental stages. However, reprogramming leukemias is an extremely inefficient process.
View Article and Find Full Text PDFMef2c Anterior Heart Field (AHF) enhancer is activated during embryonic heart development and it is expressed in multipotent cardiovascular progenitors (CVP) giving rise to endothelial and myocardial components of the outflow tract, right ventricle and ventricular septum. Here we have generated iPSC from transgenic Mef2c-AHF-Cre x Ai6(RCLZsGreen) mice. These iPSC will provide a novel tool to investigate the AHF-CVP and their cell progeny.
View Article and Find Full Text PDFNeurons obtained directly from human somatic cells hold great promise for disease modeling and drug screening. Available protocols rely on overexpression of transcription factors using integrative vectors and are often slow, complex, and inefficient. We report a fast and efficient approach for generating induced neural cells (iNCs) directly from human hematopoietic cells using Sendai virus.
View Article and Find Full Text PDFMany signals must be integrated to maintain self-renewal and pluripotency in embryonic stem cells (ESCs) and to enable induced pluripotent stem cell (iPSC) reprogramming. However, the exact molecular regulatory mechanisms remain elusive. To unravel the essential internal and external signals required for sustaining the ESC state, we conducted a short hairpin (sh) RNA screen of 104 ESC-associated phosphoregulators.
View Article and Find Full Text PDFAims: A variety of human inherited heart diseases affect the normal functions of cardiomyocytes (CMs), endothelial cells (ECs), or smooth muscle cells (SMCs). To study human heart disease and generate cardiac cells for basic and translational research, an efficient strategy is needed for production of cardiac lineages from human stem cells. In the present study, a highly reproducible method was developed that can simultaneously enrich a large number of CMs and cardiac SMCs and ECs from human induced pluripotent stem (iPS) cells with high purity.
View Article and Find Full Text PDFPurpose Of Review: The development of induced pluripotent stem cell (iPSC) technology has led to many advances in the areas of directed cell differentiation and characterization. New methods for generating iPSC-derived cardiomyocytes provide an invaluable resource for the study of certain cardiovascular disorders. This review highlights the current technology in this field, its application thus far to the study of genetic disorders of the RAS/MAPK pathway and long-QT syndrome (LQTS), and future directions for the field.
View Article and Find Full Text PDFThe generation of reprogrammed induced pluripotent stem cells (iPSCs) from patients with defined genetic disorders holds the promise of increased understanding of the aetiologies of complex diseases and may also facilitate the development of novel therapeutic interventions. We have generated iPSCs from patients with LEOPARD syndrome (an acronym formed from its main features; that is, lentigines, electrocardiographic abnormalities, ocular hypertelorism, pulmonary valve stenosis, abnormal genitalia, retardation of growth and deafness), an autosomal-dominant developmental disorder belonging to a relatively prevalent class of inherited RAS-mitogen-activated protein kinase signalling diseases, which also includes Noonan syndrome, with pleomorphic effects on several tissues and organ systems. The patient-derived cells have a mutation in the PTPN11 gene, which encodes the SHP2 phosphatase.
View Article and Find Full Text PDFInterferon-alpha (IFN-alpha) has been used for the last 20 years in the maintenance therapy of multiple myeloma (MM), though it is only effective in some patients. Congruent with this, IFN-alpha induces apoptosis in some MM cell lines. Understanding the mechanism of IFN-alpha-induced apoptosis could be useful in establishing criteria of eligibility for therapy.
View Article and Find Full Text PDFMultiple myeloma represents an incurable disease, for which development of new therapies is required. Here, we report the effect on myeloma cells of LBH589, a new hydroxamic acid-derived histone deacetylase inhibitor. LBH589 was a potent antimyeloma agent (IC(50) < 40 nmol/L) on both cell lines and fresh cells from multiple myeloma patients, including cells resistant to conventional chemotherapeutic agents.
View Article and Find Full Text PDFWe explored the ability of the proteasome inhibitor bortezomib, which prevents nuclear factor kappaB (NF-kappaB) activation, to block T-cell activation, proliferation, and survival within alloreactive compared with resting T cells. For this purpose, T cells were stimulated with PHA, alphaCD3/alphaCD28, or allogeneic dendritic cells or through mixed lymphocyte cultures. NF-kappaB expression increased in activated T lymphocytes compared with resting T cells.
View Article and Find Full Text PDFMalignant plasma cells in multiple myeloma home to the bone marrow (BM), accumulate in different niches and, in late disease, migrate from the BM into blood. These migratory events involve cell trafficking across extracellular matrix (ECM)-rich basement membranes and interstitial tissues. Metalloproteinases (MMP) degrade ECM and facilitate tumour cell invasion.
View Article and Find Full Text PDFMultiple myeloma is characterized by the accumulation of terminally differentiated B cells in the bone marrow, due to increased proliferation and restricted apoptosis of the myelomatous clone. Here we have studied the participation of a novel mitogen-activated protein kinase (MAPK) route, the extracellular signal-regulated kinase 5 (Erk5) pathway, in the regulation of myeloma cell proliferation and apoptosis. Erk5 was expressed in cells isolated from patients and in myeloma cell lines.
View Article and Find Full Text PDFc-Kit has been shown to be mutated in several types of tumours, and its activity has been correlated with increased proliferation rates in a subset of multiple myeloma (MM) patients. We have investigated the effect of imatinib mesylate (STI571), an inhibitor of c-Kit, on MM cells. STI571 inhibited the proliferation of MM cells by arresting cell cycle progression.
View Article and Find Full Text PDF