Introduction: Although medical physics as a profession is recognized as part of the health-care professional workforce by the International Labor Organization, in the Mexican context, the figure of the medical physicist (MP) is often inappropriately associated solely with technical work, leading to perception, recognition, and salary implications. The aim of this study was to explore the perception of medical specialists regarding the role and responsibilities of MPs in clinical practice in Mexico.
Methods: A national survey was answered by medical personnel, ranging from residents to qualified specialists in November 2019.
Purpose: To present an overview of the status of Medical Physics practice in Mexico, promote the legal recognition of Medical Physics high-end training, and provide information that will potentially improve the Mexican healthcare system.
Methods: For the purpose of this research, the concept of "Medical Physics Professional/s" (MPP) is introduced to refer to any person/s executing the role of a clinical medical physicist (cMP) in whole or in part independent of academic profile, training or experience. A database of MPP in Mexico was built from official sources and personal communication with peers.
Objectives: To compare the lung and breast dose associated with three chest protocols: standard, organ-based tube current modulation (OBTCM) and fast-speed scanning; and to estimate the error associated with organ dose when modelling the longitudinal (z-) TCM versus the 3D-TCM in Monte Carlo simulations (MC) for these three protocols.
Method: Five adult and three paediatric cadavers with different BMI were scanned. The CTDI of the OBTCM and the fast-speed protocols were matched to the patient-specific CTDI of the standard protocol.
Purpose: To calculate organ doses and estimate the effective dose for justification purposes in patients undergoing orthognathic treatment planning purposes and temporal bone imaging in dental cone beam CT (CBCT) and Multidetector CT (MDCT) scanners.
Methods: The radiation dose to the ICRP reference male voxel phantom was calculated for dedicated orthognathic treatment planning acquisitions via Monte Carlo simulations in two dental CBCT scanners, Promax 3D Max (Planmeca, FI) and NewTom VGi evo (QR s.r.
The bowtie filter is an essential element of computed tomography scanners. Implementation of this filter in a Monte Carlo dosimetry platform can be based on Turner's method, which describes how to measure the filter thickness and relate the x-ray beam as a function of bowtie angle to the central beam. In that application, the beam hardening is accounted for by means of weighting factors that are associated to the photons according to their position (fan angle) and energy.
View Article and Find Full Text PDF