Publications by authors named "Xizhe Zhu"

Withering is the first and key process that influences tea quality, with light quality being a key regulatory factor. However, effects of withering light quality (WLQ) on transformation and formation pathways of tea aroma and volatile metabolites (VMs) remain unclear. In the present study, four WLQs were set up to investigate their effects on tea aroma and VMs.

View Article and Find Full Text PDF
Article Synopsis
  • - This study investigates the non-volatile metabolites (NVMs) in Round Green Tea (RGT) during its processing, revealing that fixation and pan-frying are crucial steps that significantly affect these compounds.
  • - A total of 216 NVMs were characterized, and 23 key metabolites were identified, focusing on amino acids and flavonoids as important pathways influencing the taste and color of RGT.
  • - The research found that moderate pan-frying resulted in an optimal combination of a tight shape, bright color, and balanced flavor, while reducing undesirable bitter and astringent NVMs, thus offering insights for improving RGT quality.
View Article and Find Full Text PDF

Shaking constitutes a pivotal technique for enhancing black tea quality; nevertheless, its impact on the transformation mechanism of non-volatile metabolites (NVMs) in black tea remains obscure. The present study aimed to investigate the impact of shaking-withering methods (SWM) and traditional-withering methods (TWM) on black tea quality and NVMs conversion. A total of 57 NVMs and 14 objective quantitative indicators were obtained.

View Article and Find Full Text PDF

Shaking is an innovative technology employed in black tea processing to enhance flavor. However, the effects of shaking on the evolutionary mechanisms of volatile metabolites (VMs) remain unclear. In this study, we compared the effects of a shaking-withering method with those of traditional withering on the flavor and VMs transformation of black tea.

View Article and Find Full Text PDF

Drying temperature (DT) considerably affects the flavor of black tea (BT); however, its influence on non-volatile metabolites (NVMs) and their correlations remain unclear. In this study, an objective quantification technique and widely targeted metabolomics were applied to explore the effects of DT (130 °C, 110 °C, 90 °C, and 70 °C) on BT flavor and NVMs conversion. BT with a DT of 90 °C presented the highest umami, sweetness, overall taste, and brightness color values.

View Article and Find Full Text PDF

Despite the importance of fixation in determining green tea quality, its role in reducing the bitter and astringent taste of this beverage remains largely unknown. Herein, an electromagnetic roller-hot-air-steam triple-coupled fixation (ERHSF) device was developed, and its operating parameters were optimized (steam volume: 20 kg/h; hot-air temperature: 90 °C; hot-air blower speed: 1200 r/min). Compared with conventional fixation treated samples, the ratio of tea polyphenols to free amino acids and ester-catechins to simple-catechins in ERHSF-treated samples was reduced by 11.

View Article and Find Full Text PDF