Purpose: For early screening of diabetic nephropathy patients, we propose a deep learning algorithm to screen high-risk patients with diabetic nephropathy from retinal images of diabetic patients.
Methods: We propose the use of attentional mechanisms to improve the model's focus on lesion-prone regions of retinal OCT images. First, the data is trained using the base network and the Grad-CAM algorithm locates image regions that have a large impact on the model output and generates a rough mask localization map.
In the prediction of time series, the echo state network (ESN) exhibits exclusive strengths and a unique training structure. Based on ESN model, a pooling activation algorithm consisting noise value and adjusted pooling algorithm is proposed to enrich the update strategy of the reservoir layer in ESN. The algorithm optimizes the distribution of reservoir layer nodes.
View Article and Find Full Text PDFAccurate measurements of the size, shape and volume of macular edema can provide important biomarkers to jointly assess disease progression and treatment outcome. Although many deep learning-based segmentation algorithms have achieved remarkable success in semantic segmentation, these methods have difficulty obtaining satisfactory segmentation results in retinal optical coherence tomography (OCT) fluid segmentation tasks due to low contrast, blurred boundaries, and varied distribution. Moreover, directly applying a well-trained model on one device to test the images from other devices may cause the performance degradation in the joint analysis of multi-domain OCT images.
View Article and Find Full Text PDFAnomaly detection refers to leveraging only normal data to train a model for identifying unseen abnormal cases, which is extensively studied in various fields. Most previous methods are based on reconstruction models, and use anomaly score calculated by the reconstruction error as the metric to tackle anomaly detection. However, these methods just employ single constraint on latent space to construct reconstruction model, resulting in limited performance in anomaly detection.
View Article and Find Full Text PDFThis paper investigates the fixed-time synchronization and the predefined-time synchronization of memristive complex-valued bidirectional associative memory neural networks (MCVBAMNNs) with leakage time-varying delay. First, the proposed neural networks are regarded as two dynamic real-valued systems. By designing a suitable feedback controller, combined with the Lyapunov method and inequality technology, a more accurate upper bound of stability time estimation is given.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
May 2024
With the rapid advances in digital imaging and communication technologies, recently image set classification has attracted significant attention and has been widely used in many real-world scenarios. As an effective technology, the class-specific representation theory-based methods have demonstrated their superior performances. However, this type of methods either only uses one gallery set to measure the gallery-to-probe set distance or ignores the inner connection between different metrics, leading to the learned distance metric lacking robustness, and is sensitive to the size of image sets.
View Article and Find Full Text PDFIn the field of image set classification, most existing works focus on exploiting effective latent discriminative features. However, it remains a research gap to efficiently handle this problem. In this paper, benefiting from the superiority of hashing in terms of its computational complexity and memory costs, we present a novel Discrete Metric Learning (DML) approach based on the Riemannian manifold for fast image set classification.
View Article and Find Full Text PDFIn this paper, two novel and general predefined-time stability lemmas are given and applied to the predefined-time synchronization problem of memristive complex-valued bidirectional associative memory neural networks (MCVBAMNNs). Firstly, different from the generally fixed-time stability lemma, the setting of an adjustable time parameter in the derived predefined-time stability lemma causes it to be more flexible and more general. Secondly, the model studied in the complex-valued BAM neural networks model, which is different from the previous discussion of the real part and imaginary part respectively.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
December 2023
Structured pruning has received ever-increasing attention as a method for compressing convolutional neural networks. However, most existing methods directly prune the network structure according to the statistical information of the parameters. Besides, these methods differentiate the pruning rates only in each pruning stage or even use the same pruning rate across all layers, rather than using learnable parameters.
View Article and Find Full Text PDFNon-invasive whole-brain scans aid the diagnosis of neuropsychiatric disorder diseases such as autism, dementia, and brain cancer. The assessable analysis for autism spectrum disorders (ASD) is rationally challenging due to the limitations of publicly available datasets. For diagnostic or prognostic tools, functional Magnetic Resonance Imaging (fMRI) exposed affirmation to the biomarkers in neuroimaging research because of fMRI pickup inherent connectivity between the brain and regions.
View Article and Find Full Text PDFIEEE J Biomed Health Inform
November 2020
Quantitative assessment of retinal layer thickness in spectral domain-optical coherence tomography (SD-OCT) images is vital for clinicians to determine the degree of ophthalmic lesions. However, due to the complex retinal tissues, high-level speckle noises and low intensity constraint, how to accurately recognize the retinal layer structure still remains a challenge. To overcome this problem, this paper proposes an adaptive-guided-coupling-probability level set method for retinal layer segmentation in SD-OCT images.
View Article and Find Full Text PDF