Directly correlating the morphology and composition of interfacial water is vital not only for studying water icing under critical conditions but also for understanding the role of protein-water interactions in bio-relevant systems. In this study, we present a model system to study two-dimensional (2D) water layers under ambient conditions by using self-assembled monolayers (SAMs) supporting the physisorption of the Cytochrome C (Cyt C) protein layer. We observed that the 2D island-like water layers were uniformly distributed on the SAMs as characterized by atomic force microscopy, and their composition was confirmed by nano-atomic force microscopy-infrared spectroscopy and Raman spectroscopy.
View Article and Find Full Text PDFThe study of charge transport through proteins is essential for understanding complicated electrochemical processes in biological activities while the reasons for the coexistence of tunneling and hopping phenomena in protein junctions still remain unclear. In this work, a flexible and conductive ionogel electrode is synthesized and is used as a top contact to form highly reproducible protein junctions. The junctions of proteins, including human serum albumin, cytochrome C and hemoglobin, show temperature-independent electron tunneling characteristics when the junctions are in solid states while with a different mechanism of temperature-dependent electron hopping when junctions are hydrated under physiologically relevant conditions.
View Article and Find Full Text PDF