Publications by authors named "Xiyao Jin"

. Previous work has that deep learning (DL)-enhanced 4D cone beam computed tomography (4D-CBCT) images improve motion modeling and subsequent motion-compensated (MoCo) reconstruction for 4D-CBCT. However, building the motion model at treatment time via conventional deformable image registration (DIR) methods is not temporally feasible.

View Article and Find Full Text PDF

Background: For autosegmentation models, the data used to train the model (e.g., public datasets and/or vendor-collected data) and the data on which the model is deployed in the clinic are typically not the same, potentially impacting the performance of these models by a process called domain shift.

View Article and Find Full Text PDF

Purpose: To develop and evaluate deep learning-based autosegmentation of cardiac substructures from noncontrast planning computed tomography (CT) images in patients undergoing breast cancer radiotherapy and to investigate the algorithm sensitivity to out-of-distribution data such as CT image artifacts.

Methods: Nine substructures including aortic valve (AV), left anterior descending (LAD), tricuspid valve (TV), mitral valve (MV), pulmonic valve (PV), right atrium (RA), right ventricle (RV), left atrium (LA), and left ventricle (LV) were manually delineated by a radiation oncologist on noncontrast CT images of 129 patients with breast cancer; among them 90 were considered in-distribution data, also named as "clean" data. The image/label pairs of 60 subjects were used to train a 3D deep neural network while the remaining 30 were used for testing.

View Article and Find Full Text PDF

Recently, more and more attention is drawn to the field of medical image synthesis across modalities. Among them, the synthesis of computed tomography (CT) image from T1-weighted magnetic resonance (MR) image is of great importance, although the mapping between them is highly complex due to large gaps of appearances of the two modalities. In this work, we aim to tackle this MR-to-CT synthesis task by a novel deep embedding convolutional neural network (DECNN).

View Article and Find Full Text PDF