Optogenetic genome engineering is a powerful technology for high-resolution spatiotemporal genetic manipulation, especially for in vivo studies. It is difficult to generate stable transgenic animals carrying a tightly regulated optogenetic system, as its long-term expression induces high background activity. Here, the generation of an enhanced photoactivatable Cre recombinase (ePA-Cre) transgenic mouse strain with stringent light responsiveness and high recombination efficiency is reported.
View Article and Find Full Text PDFAs a potent insulinotrophic hormone, glucagon-like peptide 1 (GLP-1) is mainly secreted by intestinal L cells, which can effectively promote the release of insulin and thus reduce blood glucose. Therefore, GLP-1 and its analogs have a good prospect in the treatment of type 2 diabetes. In this study, we constructed mouse intestinal organoids that overexpress GLP-1 by optimizing the GLP-1 lentivirus infection method.
View Article and Find Full Text PDFSpleen tyrosine kinase (SYK) is a critical immune signaling molecule and therapeutic target. We identified damaging monoallelic SYK variants in six patients with immune deficiency, multi-organ inflammatory disease such as colitis, arthritis and dermatitis, and diffuse large B cell lymphomas. The SYK variants increased phosphorylation and enhanced downstream signaling, indicating gain of function.
View Article and Find Full Text PDFThe authors present a Recurrent Neural Network classifier model that segments the walking data recorded with instrumented footwear. The signals from 3 piezoresistive sensors, a 3-axis accelerometer, and Euler angles are used to generate temporal gait characteristics of a user. The model was tested using a data set collected from 28 adults containing 4198 steps.
View Article and Find Full Text PDF