Crystalline-silicon heterojunction back contact solar cells represent the forefront of photovoltaic technology, but encounter significant challenges in managing charge carrier recombination and transport to achieve high efficiency. In this study, we produced highly efficient heterojunction back contact solar cells with a certified efficiency of 27.09% using a laser patterning technique.
View Article and Find Full Text PDFBatteries with intercalation-conversion-type electrodes tend to achieve high-capacity storage, but the complicated reaction process often suffers from confusing electrochemical mechanisms. Here, we reinterpreted the essential issue about the potential of the conversion reaction and whether there is an intercalation reaction in a lithium/sodium-ion battery (LIB/SIB) with the FeP anode based on the evolution of the magnetic phase. Especially, the ever-present intercalation process in a large voltage range followed by the conversion reaction with extremely low potential was confirmed in FeP LIB, while it is mainly the conversion reaction for the sodium storage mechanism in FeP SIB.
View Article and Find Full Text PDFSilicon solar cells are a mainstay of commercialized photovoltaics, and further improving the power conversion efficiency of large-area and flexible cells remains an important research objective. Here we report a combined approach to improving the power conversion efficiency of silicon heterojunction solar cells, while at the same time rendering them flexible. We use low-damage continuous-plasma chemical vapour deposition to prevent epitaxy, self-restoring nanocrystalline sowing and vertical growth to develop doped contacts, and contact-free laser transfer printing to deposit low-shading grid lines.
View Article and Find Full Text PDFThe solid-electrolyte-interphase (SEI) plays a critical role in lithium-ion batteries (LIBs) because of its important influence on electrochemical performance, such as cycle stability, coulombic efficiency, Although LiOH has been recognized as a key component of the SEI, its influence on the SEI and electrochemical performance has not been well clarified due to the difficulty in precisely controlling the LiOH content and characterize the detailed interface reactions. Here, a gradual change of LiOH content is realized by different reduction schemes among Co(OH), CoOOH and CoO. With reduced Co nanoparticles as magnetic "probes", SEI characterization is achieved by magnetometry.
View Article and Find Full Text PDFThe interfacial morphology of crystalline silicon/hydrogenated amorphous silicon (c-Si/a-Si:H) is a key success factor to approach the theoretical efficiency of Si-based solar cells, especially Si heterojunction technology. The unexpected crystalline silicon epitaxial growth and interfacial nanotwins formation remain a challenging issue for silicon heterojunction technology. Here, we design a hybrid interface by tuning pyramid apex-angle to improve c-Si/a-Si:H interfacial morphology in silicon solar cells.
View Article and Find Full Text PDFA two-terminal (2T) perovskite/silicon heterojunction tandem solar cell (PVSK/SHJ) is considered one of the most promising candidates for next-generation photovoltaics with the possibility of achieving a power conversion efficiency (PCE) exceeding 30% at low production cost. However, the current mismatch and voltage loss have seriously decreased the performance of 2T PVSK/SHJ tandem solar cells. Here, we report the composition engineering for perovskite top cells to prepare a high performance 2T tandem cell by tuning CsBr co-evaporating rates and increasing concentrations of FAI/FABr solutions.
View Article and Find Full Text PDFMaterials (Basel)
February 2023
TiO is a promising anode material for lithium-ion batteries (LIBs) due to its low cost, suitable operating voltage, and excellent structural stability. The inherent poor electron conductivity and low ion diffusion coefficient, however, severely limit its application in lithium storage. Here, Co-doped TiO is synthesized by a hydrothermal method as an anode material since Co@TiO possesses a large specific surface area and high electronic conductivity.
View Article and Find Full Text PDF