Publications by authors named "Xixi Xia"

Purpose: This study aimed to explore the mechanism by which systemic lupus erythematosus (SLE) activity is promoted through Treg inhibition from the perspective of ceRNA.

Methods: qRT-PCR was used to detect the expressions of circETS1, miR-1205, and FoxP3 in clinical SLE patient samples. Overexpression of circETS1and miR-1205, along with knockdown of miR-1205 and FoxP3 were conducted in CD4 T cells, while the proliferation of helper T cell 17 (Th17) and regulatory T cell (Treg) was detected.

View Article and Find Full Text PDF

Background: Significant progress has been made in cell replacement therapy for neural retinal diseases using retinal cells differentiated from human pluripotent stem cells. Low tumorigenicity and the ability to mature to form synaptic junctions make precursor cells a promising donor source. Here, we attempted to improve the yield of photoreceptor precursor cells in three-dimensional retinal organoids from human embryonic stem cells (hESCs).

View Article and Find Full Text PDF

Background: Despite notable progression from a therapeutic point of view, castration resistant prostate cancer (CRPC) remains a clinical significant stumbling block. The current study aimed to elucidate the functional role of the gene glucocorticoid receptor (GR) in CRPC, and identify the contributions of the GR gene in CRPC in connection with microRNA-143-3p (miR-143-3p)/Jagged1 (JAG1)/NOTCH2.

Methods: The expression of GR and miR-143-3p in CRPC tissues and cells as well as JAG1/NOTCH2 expression in CRPC tissues was initially determined by quantitative polymerase chain reaction and Western blot analyses.

View Article and Find Full Text PDF

Retinitis pigmentosa (RP) is an irreversible, inherited retinopathy in which early-onset nyctalopia is observed. Despite the genetic heterogeneity of RP, RPGR mutations are the most common causes of this disease. Here, we generated induced pluripotent stem cells (iPSCs) from three RP patients with different frameshift mutations in the RPGR gene, which were then differentiated into retinal pigment epithelium (RPE) cells and well-structured retinal organoids possessing electrophysiological properties.

View Article and Find Full Text PDF