Publications by authors named "Xixi Ai"

Hypoxia is a major obstacle towards successful cancer treatment, due to the hypoxia-mediated resistance to radiotherapy and chemotherapy, as well as immunosuppression. Therefore, engineering hypoxia-sensitive cytotoxic and immunogenic nanomedicines would promote the therapeutic efficacy. In this study, we developed novel tumor-targeted polymeric micelles sensing hypoxia in tumors to activate strong cytotoxicity and immunogenic responses for effectively eradicating advanced breast cancer.

View Article and Find Full Text PDF

Twelve azole derivatives of emodin were designed to possess anti-inflammatory activity and synthesized via a two-step sequence composed of the Williamson ether reaction and N-alkylation. The anti-inflammatory properties of these compounds were evaluated in RAW264.7 cells by measuring lipopolysaccharide (LPS)-induced nitric oxide (NO) production.

View Article and Find Full Text PDF

Efficient intracellular delivery of bioactive compounds into cancer cells is critically important for treatment, as some compounds only validate for therapy after entering cancer cells. The boron neutron capture therapy (BNCT) applies thermal neutron irradiation to react with B-compounds that existed inside cancer cells to generate secondary killing irradiations to eradicate cancer cells. The effective distance of the emitted secondary killing irradiations is as long as a cellular diameter, which requires the cellular uptake of B-compounds for efficient tumor BNCT.

View Article and Find Full Text PDF

A series of novel potentially platelet aggregation-inhibiting 1,4-benzoxazine-3(4H)-one derivatives was designed and synthesized through Smiles rearrangement, reduction and acetylation reactions. The antiaggregatory activities of the target molecules on arterial blood samples from rabbits, expressed by IC₅₀ values (μM), were then evaluated in vitro against ADP induced platelet aggregation. The favorable IC₅₀ values of compound 8c (IC₅₀=8.

View Article and Find Full Text PDF