Publications by authors named "Xiwei Bai"

In this letter we report a diamond lateral FinFET fabricated using an ohmic regrowth technique. The use of ohmic regrowth separates the source/drain and gate fabrication, providing a viable means to improve ohmic contact resistance while protecting the top surface of the diamond channel from dry etch damage. Enabled by high channel quality, the diamond transistor behavior was shown to transit from a pentode-like to a triode-like characteristic when channel length decreased.

View Article and Find Full Text PDF

Neuromorphic networks of artificial neurons and synapses can solve computationally hard problems with energy efficiencies unattainable for von Neumann architectures. For image processing, silicon neuromorphic processors outperform graphic processing units in energy efficiency by a large margin, but deliver much lower chip-scale throughput. The performance-efficiency dilemma for silicon processors may not be overcome by Moore's law scaling of silicon transistors.

View Article and Find Full Text PDF

In this letter we report the first diamond fin field-effect transistor (diamond FinFET) without a hydrogen-terminated channel. The device operates with hole accumulation by metal-oxide-semiconductor (MOS) structures built on fins to maintain effective control of the channel conduction. Devices with 100-nm-wide fins were designed and fabricated to ensure that the channel pinched off at zero gate bias.

View Article and Find Full Text PDF