The molecular mechanisms of epigenetic regulation in gastric cancer development are not yet well established. In this study, we demonstrated that KMT2A was highly expressed in gastric cancer and associated with poor outcomes of patients and revealed that KMT2A was significantly associated with stemness and increased nuclear β-catenin in gastric cancer. Mechanistically, KMT2A activated the translocation of β-catenin into the nucleus of gastric cancer cells, and then, β-catenin served as a coactivator of KLF11, which promoted the expression of specific gastric cancer stemness-related molecules, including SOX2 and FOXM1.
View Article and Find Full Text PDFObjective: To establish a rat model of chronic pancreatitis, and to prove the activation of sonic hedgehog (SHH) signaling pathways in chronic pancreatitis.
Methods: This study was conducted between January and July 2008 in the Department of General Surgery, Wuhan General Hospital, Guangzhou Military Command, Wuhan, China. Thirty Wistar rats were randomly divided into 3 groups: control group (A), experimental control group (B), and model group (C) (10 rats in each group).