Publications by authors named "Xiuyu Jin"

Article Synopsis
  • Scientists studied how two different ways of giving mice the flu can lead to pneumonia: through their nose (intranasal) or directly into their lungs (intratracheal).
  • They compared how sick the mice got by looking at their survival rates, weight changes, and how much virus was in their lungs.
  • The results showed that giving the flu directly to the lungs caused worse lung damage than when it was given through the nose, making it a better method for studying serious pneumonia in mice.
View Article and Find Full Text PDF

In this work, a series of polytriazole-based unimolecular nanocontainers (UNs) with good water solubility, uniformity, and colloidal stability via a bottom-up chain-growth copper-catalyzed azide-alkyne cycloaddition (co)polymerization that features tunable size, degree of branching (DB), and functionality of the UNs is developed. A broad selection of hydrophobic payload molecules, including Nile red (NR), camptothecin, pyrene, 1-pyrenemethanol, and IR676, are successfully encapsulated to demonstrate the high versatility of these polymers as UNs. Using NR as a probe guest, the relationship between the encapsulation performance and the structural properties of UNs, including size and DB, is investigated.

View Article and Find Full Text PDF

In-situ polymer capping of cesium lead bromide (CsPbBr) nanocrystals with polymethyl acrylate is an effective approach to improve the colloidal stability in the polar medium and thus extends their use in photocatalysis. The photoinduced electron transfer properties of polymethyl acrylate (PMA)-capped CsPbBr nanocrystals have been probed using surface-bound viologen molecules with different alkyl chains as electron acceptors. The apparent association constant (K) obtained for the binding of viologen molecules with PMA-capped CsPbBr was 2.

View Article and Find Full Text PDF

Recovering rare earth elements (REEs) from waste streams represents a sustainable approach to diversify REE supply while alleviating the environmental burden. However, it remains a critical challenge to selectively separate and concentrate REEs from low-grade waste streams. In this study, we developed a new type of biosorbent by immobilizing Lanmodulin-SpyCatcher (LanM-Spycatcher) on the surface of SpyTag-functionalized magnetic nanoparticles (MNPs) for selective separation and recovery of REEs from waste streams.

View Article and Find Full Text PDF

Background: Depression is a psychiatric disorder with global public health concerns. Although a number of risk factors have been identified for depression, there is no clear relationship between biochemistry and depression. In this study, we assessed whether depressive disorders are significantly associated with biochemical indicators.

View Article and Find Full Text PDF

Colloidal lead halide perovskite nanocrystals (PNCs) have demonstrated great potential as materials of light-emitting diodes if their colloidal and compositional instability could be addressed. Herein, we reported a facile surface-initiated photopolymerization method that introduced polymers on a CsPbBr PNC surface to achieve improved stability and regulated halide exchange of PNCs in polar solvents. Synthetic polymers grafted from the surface of an individual PNC surface stabilized the PNCs, in which the multidentate linkage initiators and the extending polymers were two essential factors.

View Article and Find Full Text PDF

Co-immobilization of multiple proteins onto one nanosupport has large potential in mimicking natural multiprotein complexes and constructing efficient cascade biocatalytic systems. However, control of different proteins regarding their spatial arrangement and loading ratio remains a big challenge, and protein co-immobilization often requires the use of purified proteins. Herein, built upon our recently designed SpyTag-functionalized magnetic nanoparticles (MNPs), we established a modular MNP platform for site-specific, tunable, and cost-effective protein co-immobilization.

View Article and Find Full Text PDF

Immobilization of proteins on magnetic nanoparticles (MNPs) is an effective approach to improve protein stability and facilitate separation of immobilized proteins for repeated use. Herein, we exploited the efficient SpyTag-SpyCatcher chemistry for conjugation of functional proteins onto MNPs and established a robust magnetic-responsive nanoparticle platform for protein immobilization. To maximize the loading capacity and achieve outstanding water dispersity, the SpyTag peptide was incorporated into the surface-charged polymers of MNPs, which provided abundant active sites for Spy chemistry while maintaining excellent colloidal stability in buffer solution.

View Article and Find Full Text PDF

Unraveling the role of surface oxide on affecting its native metal disulfide's CO photoreduction remains a grand challenge. Herein, we initially construct metal disulfide atomic layers and hence deliberately create oxidized domains on their surfaces. As an example, SnS atomic layers with different oxidation degrees are successfully synthesized.

View Article and Find Full Text PDF