Publications by authors named "Xiushan Nie"

Next Point-of-Interest (POI) recommendation is crucial in location-based applications, analyzing user behavior patterns from historical trajectories. Existing studies usually use graph structures and attention mechanisms for sequential prediction with single fixed points. However, existing work based on the Markov chain hypothesis neglects dependencies of multi-hop transfers between POIs, which is a common pattern of user behaviors.

View Article and Find Full Text PDF

Lung cancer is a leading cause of cancer deaths and imposes an enormous economic burden on patients. It is important to develop an accurate risk assessment model to determine the appropriate treatment for patients after an initial lung cancer diagnosis. The Cox proportional hazards model is mainly employed in survival analysis.

View Article and Find Full Text PDF

Self-supervised space-time correspondence learning utilizing unlabeled videos holds great potential in computer vision. Most existing methods rely on contrastive learning with mining negative samples or adapting reconstruction from the image domain, which requires dense affinity across multiple frames or optical flow constraints. Moreover, video correspondence prediction models need to uncover more inherent properties of the video, such as structural information.

View Article and Find Full Text PDF

Capturing global and subtle discriminative information using attention mechanisms is essential to address the challenge of inter-class high similarity for vehicle re-identification (Re-ID) task. Mixing self-information of nodes or modeling context based on pairwise dependencies between nodes are the core ideas of current advanced attention mechanisms. This paper aims to explore how to utilize both dependency context and self-context in an efficient way to facilitate attention to learn more effectively.

View Article and Find Full Text PDF

Automatic breast image classification plays an important role in breast cancer diagnosis, and multi-modality image fusion may improve classification performance. However, existing fusion methods ignore relevant multi-modality information in favor of improving the discriminative ability of single-modality features. To improve classification performance, this paper proposes a multi-modality relation attention network with consistent regularization for breast tumor classification using diffusion-weighted imaging (DWI) and apparent dispersion coefficient (ADC) images.

View Article and Find Full Text PDF

The emergence of anti-vascular endothelial growth factor (anti-VEGF) therapy has revolutionized neovascular age-related macular degeneration (nAMD). Post-therapeutic optical coherence tomography (OCT) imaging facilitates the prediction of therapeutic response to anti-VEGF therapy for nAMD. Although the generative adversarial network (GAN) is a popular generative model for post-therapeutic OCT image generation, it is realistically challenging to gather sufficient pre- and post-therapeutic OCT image pairs, resulting in overfitting.

View Article and Find Full Text PDF

Unlabelled: The outbreak of coronavirus disease 2019 (COVID-19) has severely harmed human society and health. Because there is currently no specific drug for the treatment and prevention of COVID-19, we used a collaborative filtering algorithm to predict which traditional Chinese medicines (TCMs) would be effective in combination for the prevention and treatment of COVID-19. First, we performed drug screening based on the receptor structure prediction method, molecular docking using q-vina to measure the binding ability of TCMs, TCM formulas, and neo-coronavirus proteins, and then performed synergistic filtering based on Laplace matrix calculations to predict potentially effective TCM formulas.

View Article and Find Full Text PDF

. Choroidal neovascularization (CNV) is a characteristic feature of wet age-related macular degeneration, which is one of the main causes of blindness in the elderly. Automatic classification of CNV in optical coherence tomography images plays an auxiliary role in the clinical treatment of CNV.

View Article and Find Full Text PDF

With the progress of clinical imaging innovation and machine learning, the computer-assisted diagnosis of breast histology images has attracted broad attention. Nonetheless, the use of computer-assisted diagnoses has been blocked due to the incomprehensibility of customary classification models. In view of this question, we propose a novel method for Learning Binary Semantic Embedding (LBSE).

View Article and Find Full Text PDF

Compact hash codes can facilitate large-scale multimedia retrieval, significantly reducing storage and computation. Most hashing methods learn hash functions based on the data similarity matrix, which is predefined by supervised labels or a distance metric type. However, this predefined similarity matrix cannot accurately reflect the real similarity relationship among images, which results in poor retrieval performance of hashing methods, especially in multi-label datasets and zero-shot datasets that are highly dependent on similarity relationships.

View Article and Find Full Text PDF

The cross-modal hashing method can map heterogeneous multimodal data into a compact binary code that preserves semantic similarity, which can significantly enhance the convenience of cross-modal retrieval. However, the currently available supervised cross-modal hashing methods generally only factorize the label matrix and do not fully exploit the supervised information. Furthermore, these methods often only use one-directional mapping, which results in an unstable hash learning process.

View Article and Find Full Text PDF

Similar judicial case matching aims to enable an accurate selection of a judicial document that is most similar to the target document from multiple candidates. The core of similar judicial case matching is to calculate the similarity between two fact case documents. Owing to similar judicial case matching techniques, legal professionals can promptly find and judge similar cases in a candidate set.

View Article and Find Full Text PDF

Choroidal neovascularization (CNV) is a characteristic feature of wet age-related macular degeneration (AMD). Quantification of CNV is useful to clinicians in the diagnosis and treatment of CNV disease. Before quantification, CNV lesion should be delineated by automatic CNV segmentation technology.

View Article and Find Full Text PDF

Efficient hashing techniques have attracted extensive research interests in both storage and retrieval of highdimensional data, such as images and videos. In existing hashing methods, a linear model is commonly utilized owing to its efficiency. To obtain better accuracy, linear-based hashing methods focus on designing a generalized linear objective function with different constraints or penalty terms that consider the inherent characteristics and neighborhood information of samples.

View Article and Find Full Text PDF
Robust Structured Graph Clustering.

IEEE Trans Neural Netw Learn Syst

November 2020

Graph-based clustering methods have achieved remarkable performance by partitioning the data samples into disjoint groups with the similarity graph that characterizes the sample relations. Nevertheless, their learning scheme still suffers from two important problems: 1) the similarity graph directly constructed from the raw features may be unreliable as real-world data always involves adverse noises, outliers, and irrelevant information and 2) most graph-based clustering methods adopt two-step learning strategy that separates the similarity graph construction and clustering into two independent processes. Under such circumstance, the generated graph is unstructured and fixed.

View Article and Find Full Text PDF