Publications by authors named "Xiuqing Cao"

Agricultural droughts are a threat to local economies, as they disrupt crops. The monitoring of agricultural droughts is of practical significance for mitigating loss. Even though satellite data have been extensively used in agricultural studies, realizing wide-range, high-resolution, and high-precision agricultural drought monitoring is still difficult.

View Article and Find Full Text PDF

Gated ZnO nanowire field emitter arrays (FEAs) have important applications in large-area vacuum microelectronic devices such as flat panel X-ray sources and photodetectors. As the application requires high-pixel-density FEAs, how the pixel density affects the emission performance of the gated ZnO nanowire FEAs needs investigating. In this paper, the performance of coaxis planar -gated ZnO nanowire FEAs was simulated under different pixel sizes while keeping the lateral geometric parameter in proportion.

View Article and Find Full Text PDF

Due to the importance and complexity of water resources regulations in the pond irrigation systems of the Jiang-Huai hilly regions, a water allocation simulation model for pond irrigation districts based on system simulation theory was developed in this study. To maximize agricultural irrigation benefits while guaranteeing rural domestic water demand, an optimal water resources regulation model for pond irrigation districts and a simulation-based optimal water resources regulation technology system for the pond irrigation system were developed. Using this system, it was determined that the suitable pond coverage rate (pond capacity per unit area) was 2.

View Article and Find Full Text PDF

Nanowire field emitters have great potential for use as large-area gated field emitter arrays (FEAs). However, the micrometer-scale cathode patterns in gated FEA devices will reduce regulation of the gate voltage and limit the field emission currents of these devices as a result of field-screening effect among the neighboring nanowires. In this article, a ring-shaped ZnO nanowire pad is proposed to overcome this problem.

View Article and Find Full Text PDF