Objective: The aim of this study is to evaluate the clinical efficacy of injectable cemented hollow pedicle screw (CICPS) in the treatment of osteoporotic lumbar degenerative diseases through a large sample long-term follow-up study. Additionally, we aim to explore the risk factors affecting interbody fusion.
Methods: A total of 98 patients who underwent CICPS for transforaminal lumbar interbody fusion (TLIF) for osteoporotic lumbar degenerative disease from March 2011 to September 2017 were analyzed.
In recent years, low-cost high-quality non-line-of-sight (NLOS) imaging by a passive light source has been a significant research dimension. Here, we report a new, to the best of our knowledge, reconstruction method for the well-known "occluder-aided" NLOS imaging configuration based on an untrained deep decoder network. Using the interaction between the neural network and the physical forward model, the network weights can be automatically updated without the need for training data.
View Article and Find Full Text PDFOptical cryptanalysis based on deep learning (DL) has grabbed more and more attention. However, most DL methods are purely data-driven methods, lacking relevant physical priors, resulting in generalization capabilities restrained and limiting practical applications. In this paper, we demonstrate that the double-random phase encoding (DRPE)-based optical cryptosystems are susceptible to preprocessing ciphertext-only attack (pCOA) based on DL strategies, which can achieve high prediction fidelity for complex targets by using only one random phase mask (RPM) for training.
View Article and Find Full Text PDFLight redirection plays an important role in photonic integrated circuit system, which attracts much attention on account of thriving application prospects from microwave to visible frequency. By treating a two-dimensional photonic crystal array as a dielectric resonator with low effective index n << 1, a new strategy of one-direction semi-enclosed meta-resonator is proposed for light redirection and splitting with a high efficiency beyond 90%. Instead of zero-index material, the phenomenon of significant collimating radiations with zero phase delay can also be achieved through a meta-resonator of low effective index to stretch the internal resonant field with a wavelength much longer than that in air.
View Article and Find Full Text PDFTexture mapping is one of the key procedures to generate photorealistic three-dimensional (3D) models. To avoid dependence on the features of the texture and the geometric model, coded markers are introduced as the control points to assist the texture mapping. Multiple texture images containing the markers are captured, and the 3D coordinates of the markers are reconstructed with photogrammetry; meanwhile, the parameters of the texture camera are optimized with the bundle adjustment strategy.
View Article and Find Full Text PDFThe singular value decomposition ghost imaging (SVDGI) is proposed to enhance the fidelity of computational ghost imaging (GI) by constructing a measurement matrix using singular value decomposition (SVD) transform. After SVD transform on a random matrix, the non-zero elements of singular value matrix are all made equal to 1.0, then the measurement matrix is acquired by inverse SVD transform.
View Article and Find Full Text PDFAs interferometry is the highest precision distance measuring technique, we proposed a mechanism of single-beam interferometry employing all-dielectric photonic metamaterial with effective zero-index as a means of precise displacement measurement. This mechanism offers a straightforward method for performing optical range-finding over multi-wavelength and sub-wavelength displacements in a compact uniaxial reflection configuration. The higher sensitivity and resolution can be achieved in this mechanism with the intrinsic accuracy of λ/4.
View Article and Find Full Text PDFAn information security scheme based on computational temporal ghost imaging is proposed. A sequence of independent 2D random binary patterns are used as encryption key to multiply with the 1D data stream. The cipher text is obtained by summing the weighted encryption key.
View Article and Find Full Text PDFThe phenomena of the minimum transmittance spectrum or the maximum reflection spectrum located around the Dirac frequency have been observed to demonstrate the 1/L scaling law near the Dirac-like point through the finite ribbon structure. However, so far there is no effective way to identify the Dirac-like point accurately. In this work we provide an effective measurement method to identify the Dirac-like point accurately through a finite photonic crystal square matrix.
View Article and Find Full Text PDFA triple-image encryption method is proposed that is based on phase-truncated Fresnel transform (PTFT), basic vector composition, and XOR operation. In the encryption process, two random phase masks, with one each placed at the input plane and the transform plane, are generated by basic vector resolution operations over the first and the second plaintext images, and then a ciphered image in the input plane is fabricated by XOR encoding for the third plaintext image. When the cryptosystem is illuminated by an on-axis plane, assisted by PTFT, the ciphered image is finally encrypted into an amplitude-only noise-like image in the output plane.
View Article and Find Full Text PDFA multiple-image authentication method with a cascaded multilevel architecture in the Fresnel domain is proposed, in which a synthetic encoded complex amplitude is first fabricated, and its real amplitude component is generated by iterative amplitude encoding, random sampling, and space multiplexing for the low-level certification images, while the phase component of the synthetic encoded complex amplitude is constructed by iterative phase information encoding and multiplexing for the high-level certification images. Then the synthetic encoded complex amplitude is iteratively encoded into two phase-type ciphertexts located in two different transform planes. During high-level authentication, when the two phase-type ciphertexts and the high-level decryption key are presented to the system and then the Fresnel transform is carried out, a meaningful image with good quality and a high correlation coefficient with the original certification image can be recovered in the output plane.
View Article and Find Full Text PDFBased on the wavefront modulation of photonic crystal (PhC), zero phase delay of propagating electromagnetic wave (EMW) can be realized with a relaxed incident condition in the PhC. The phase velocity is modulated perpendicular to the group velocity with wavefronts extending along the direction of energy flow, which lead to the phenomenon of zero phase delay with a finite spatial period. This effect can be realized simultaneously in both positive and negative refracted waves.
View Article and Find Full Text PDFAn optical identity authentication scheme based on the elliptic curve digital signature algorithm (ECDSA) and phase retrieval algorithm (PRA) is proposed. In this scheme, a user's certification image and the quick response code of the user identity's keyed-hash message authentication code (HMAC) with added noise, serving as the amplitude and phase restriction, respectively, are digitally encoded into two phase keys using a PRA in the Fresnel domain. During the authentication process, when the two phase keys are presented to the system and illuminated by a plane wave of correct wavelength, an output image is generated in the output plane.
View Article and Find Full Text PDFA novel single-channel color-image watermarking with digital-optics means based on phase-shifting interferometry (PSI) and a neighboring pixel value subtraction algorithm in the discrete-cosine-transform (DCT) domain is proposed. The converted two-dimensional indexed image matrix from an original color image is encrypted to four interferograms by a PSI and double random-phase encoding technique. Then the interferograms are embedded in one chosen channel of an enlarged color host image in the DCT domain.
View Article and Find Full Text PDFA novel information security system based on multiple-phase retrieval by an iterative Fresnel-transform algorithm and pixel random permutation (PRP) technique is proposed. In this method a series of phase masks cascaded in free space are employed and the phase distributions of all the masks are adjusted simultaneously in each iteration. It can achieve faster convergence and better quality of the recovered image compared with double-phase encoding and a similar approach in the spatial-frequency domain with the same number of phase masks and can provide a higher degree of freedom in key space with more geometric parameters as supplementary keys.
View Article and Find Full Text PDFGenerally, the reconstruction of an object image from its diffraction field requires both the amplitude and the phase information of this field. We systematically investigated the effects of using only the real part, the imaginary part, or the phase information of the diffraction field to reconstruct the original image for both the binary and the gray-level images. We show that the phase information can yield a better result of image retrieval than the real or imaginary part and that the recovered image from the phase information is satisfactory especially for binary input.
View Article and Find Full Text PDFA method for both image encryption and watermarking by three-step phase-shifting interferometry is proposed. The image to be hidden is stored in three interferograms and then can be reconstructed by use of one random phase mask, several specific geometric parameters, and a certain algorithm. To further increase the security of the hidden image and confuse unauthorized receivers, images with the same or different content can be added to the interferograms, and these images will have no or only a small effect on the retrieval of the hidden image, owing to the specific property of this algorithm.
View Article and Find Full Text PDFA systematic and comprehensive analysis of the interference of four umbrellalike beams (lFUB) is provided based on the reciprocal space theory. The concept of pattern contrast is extended to the case of the IFUB, and it is indicated that a uniform contrast for all the interference terms can be obtained by properly choosing the beam ratio and the polarization of each beam. Different polarization combinations, including linear light and linear light, circular light and circular light, and linear light and circular light, have been discussed for the purpose of maximum uniform contrast.
View Article and Find Full Text PDF