The introduction of metamaterials into electrochromic (EC) displays has recently inspired a great breakthrough in the EC field, as this can offer a variety of new attractive features, from a very wide gamut of colors to very fast switching times. However, such metamaterial-based EC displays still face significant constraints when developing from single electrodes to full devices, because other supportive components in devices, such as counter electrodes and electrolytes, significantly affect light propagation and the subsequent perceived color quality in metamaterial-based EC devices. Herein, a new, cost-effective device design structured around a new type of porous metamaterial is reported to circumvent the critical problem in metamaterial-based EC displays.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
March 2023
Non-metallic materials have emerged as a new family of active substrates for surface-enhanced Raman scattering (SERS), with unique advantages over their metal counterparts. However, owing to their inefficient interaction with the incident wavelength, the Raman enhancement achieved with non-metallic materials is considerably lower with respect to the metallic ones. Herein, we propose colourful semiconductor-based SERS substrates for the first time by utilizing a Fabry-Pérot cavity, which realize a large freedom in manipulating light.
View Article and Find Full Text PDF