Publications by authors named "Xiuli Yue"

: To assess the anticancer effect of microbubbles (MBs) in combination with sinoporphyrin sodium (DVDMS)-mediated sonodynamic therapy (SDT) for the in vitro and in vivo treatment of hepatocellular carcinoma (HCC). : HepG2 cells were used for in vitro experiments. Reactive oxygen species (ROS) production was detected using 2',7'-dichlorodihydrofluorescein diacetate and singlet oxygen sensor green in vitro and in solution, respectively.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) poses a challenge in oncology due to its high lethality and resistance to immunotherapy. Recently, emerging research on the stimulator of interferon gene (STING) pathway offers novel opportunities for immunotherapy. Although STING expression is retained in PDAC cells, the response of PDAC cells to STING agonists remains ineffective.

View Article and Find Full Text PDF

To improve the selective separation performance of silica nanofibers (SiO NFs) for cesium ions (Cs) and overcome the defects of Prussian blue nanoparticles (PB NPs), PB/SiO-NH NFs were prepared to remove Cs from water. Among them, 3-aminopropyltriethoxysilane (APTES) underwent an alkylation reaction with SiO, resulting in the formation of a dense Si-O-Si network structure that decorated the surface of SiO NFs. Meanwhile, the amino functional groups in APTES combined with Fe and then reacted with Fe to form PB NPs, which anchored firmly on the aminoated SiO NFs surface.

View Article and Find Full Text PDF

Background: Salt stress significantly reduces soybean yield. To improve salt tolerance in soybean, it is important to mine the genes associated with salt tolerance traits.

Results: Salt tolerance traits of 286 soybean accessions were measured four times between 2009 and 2015.

View Article and Find Full Text PDF

A major quantitative trait locus (QTL) for the hundred-seed weight (HSW) was identified and confirmed in the two distinct soybean populations, and the target gene GmCYP82C4 underlying this locus was identified that significantly associated with soybean seed weight, and it was selected during the soybean domestication and improvement process. Soybean is a major oil crop for human beings and the seed weight is a crucial goal of soybean breeding. However, only a limited number of target genes underlying the quantitative trait loci (QTLs) controlling seed weight in soybean are known so far.

View Article and Find Full Text PDF

Microbubbles have been the earliest and most widely used ultrasound contrast agents by virtue of their unique features: such as non-toxicity, intravenous injectability, ability to cross the pulmonary capillary bed, and significant enhancement of echo signals for the duration of the examination, resulting in essential preclinical and clinical applications. The use of microbubbles functionalized with targeting ligands to bind to specific targets in the bloodstream has further enabled ultrasound molecular imaging. Nevertheless, it is very challenging to utilize targeted microbubbles for molecular imaging of extravascular targets due to their size.

View Article and Find Full Text PDF

Reflection reduction metasurface (RRM) has been drawing much attention due to its potential application in stealth technology. However, the traditional RRM is designed mainly based on trial-and-error approaches, which is time-consuming and leads to inefficiency. Here, we report the design of a broadband RRM based on deep-learning methodology.

View Article and Find Full Text PDF

Conventional NO gas generation based on l-arginine (l-Arg) is usually dependent on HO and O, both of which are very limited within the tumor microenvironment, thus greatly limiting l-Arg's therapeutic effect. Herein, a novel nanoplatform for efficiently triggering NO production based on ultrasound-induced piezocatalysis was developed, which was fabricated by coating amphiphilic poly-l-arginine (DSPE-PEG-Arg, DPA) on the piezoelectric material of barium titanate (BTO). The resulting BTO@DPA nanoparticles can efficiently generate HO, O, and O via ultrasound-induced piezocatalysis based on BTO and oxidize the surface arginine to produce NO, which can even further interact with the reactive oxygen species (ROS) to produce more reactive peroxynitrite, thus inducing serious tumor cell apoptosis both in hypoxia and normoxia.

View Article and Find Full Text PDF
Article Synopsis
  • Four major quantitative trait loci (QTL) associated with 100-seed weight in a soybean population were identified through a study involving 300 recombinant inbred lines (RILs) from two parent strains, PI595843 and WH.
  • Researchers detected 38 QTL overall, with four major QTL explaining over 10% of seed weight variation across five different environments, along with identifying six potential candidate genes linked to these QTL.
  • One candidate gene, Glyma.19G143300, is particularly significant as it encodes a receptor-like protein kinase and shows critical variations between the parent strains that could influence seed size, offering insights for molecular breeding of improved soybean varieties.
View Article and Find Full Text PDF

Clinically used small-molecular photosensitizers (PSs) for photodynamic therapy (PDT) share similar disadvantages, such as the lack of selectivity towards cancer cells, short blood circulation time, life-threatening phototoxicity, and low physiological solubility. To overcome such limitations, the present study capitalizes on the synthesis of ultra-small hydrophilic porphyrin-based silica nanoparticles (core-shell porphyrin-silica dots; PSDs) to enhance the treatment outcomes of cancer PDT. These ultra-small PSDs, with a hydrodynamic diameter less than 7 nm, have an excellent aqueous solubility in water (porphyrin; TPPS-NH) and enhanced tumor accumulation therefore exhibiting enhanced fluorescence imaging-guided PDT in breast cancer cells.

View Article and Find Full Text PDF

In the past two decades, owing to the development of metamaterials and the theoretical tools of transformation optics and the scattering cancellation method, a plethora of unprecedented functional devices, especially invisibility cloaks, have been experimentally demonstrated in various fields, e.g., electromagnetics, acoustics, and thermodynamics.

View Article and Find Full Text PDF

Cyanine is a meritorious fluorogenic core for the construction of fluorescent probes and its phototherapeutic potential has been enthusiastically explored as well. Alternatively, the covalent conjugation of cyanine with other potent therapeutic agents not only boosts its therapeutic efficacy but also broadens its therapeutic modality. Herein, we summarize miscellaneous cyanine-therapeutic agent conjugates in cancer theranostics from literature published between 2014 and 2020.

View Article and Find Full Text PDF

Cyanine is a class of fluorescent dye with meritorious fluorescence properties and has motivated numerous researchers to explore its imaging capabilities by miscellaneous structural modification and functionalization strategies. The covalent conjugation with other functional molecules represents a distinctive design strategy and has shown immense potential in both basic and clinical research. This review article summarizes recent achievements in cyanine conjugate-based probes for biomedical imaging.

View Article and Find Full Text PDF

Stage IV breast cancer, which has a high risk of invasion, often develops into metastases in distant organs, especially in the lung, and this could threaten the lives of women. Thus, the development of more advanced therapeutics that can efficiently target metastatic foci is crucial. In this study, we built an dual-acting therapeutic strategy using micelles with high stability functionalized with fibronectin-targeting CREKA peptides encapsulating two slightly soluble chemotherapy agents in water, doxorubicin (D) and vinorelbine (V), which we termed C-DVM.

View Article and Find Full Text PDF

The recent progress in the development of highly biocompatible nanoplatforms mostly encompasses the use of biological excipients such as red blood cells, cancer cell membranes, and also platelets. Such specialized vectors, if mimicked correctly, have intrinsic ability to navigate through the biological system and perform their intended action without eliciting any cascade of inflammatory processes. Naturally, platelets have been found to accumulate in the wound sites and also interact with circulating tumor cells (CTCs).

View Article and Find Full Text PDF

Chemotherapy suffers from some limitations such as poor bioavailability, rapid clearance from blood, poor cellular uptake, low tumor accumulation, severe side effects on healthy tissues and most importantly multidrug resistance (MDR) in cancer cells. Nowadays, a series of smart drug delivery system (DDS) based on amphiphilic drug conjugates (ADCs) has been developed to solve these issues, including polymer-drug conjugate (PDC), phospholipid-mimicking prodrugs, peptide-drug conjugates (PepDCs), pure nanodrug (PND), amphiphilic drug-drug conjugate (ADDC), and Janus drug-drug conjugate (JDDC). These ADCs can self-assemble into nanoparticles (NPs) or microbubbles (MBs) for targeted drug delivery by minimizing the net amount of excipients, realizing great goals, such as stealth behavior and physical integrity, high drug loading content, no premature leakage, long blood circulation time, fixed drug combination, and controlled drug-release kinetics.

View Article and Find Full Text PDF

To improve the non-invasive therapeutic efficacy for ER positive breast cancer (ER+ BC), we fabricated a multifunctional FOXA1 loaded porphyrin microbubble to combine photodynamic therapy (PDT) and gene therapy of FOXA1 knockdown (KD) with ultrasound targeted microbubble destruction (UTMD) technology under the guidance of contrast enhanced ultrasound (CEUS). Cationic porphyrin microbubbles (CpMBs) were firstly fabricated from a porphyrin grafted lipid with two cationic amino groups (PGL-NH2) and fluorocarbon inert gas of CF. Porphyrin group in the CpMBs monolayer could be used as a photosensitizer for PDT, while amino groups could adsorb siRNA through electrostatic interaction for FOXA1 KD, which could inhibit the proliferation of estrogen-dependent ER+ BC.

View Article and Find Full Text PDF

A bimodal contrast nanoagent was developed by chelating gadolinium ions to 2-[bis[2-[carboxymethyl-[2-oxo-2-(2-sulfanylethyl-amino)ethyl]amino]ethyl]amino]acetic acid (DTDTPA)-modified CuInS/ZnS quantum dots (QDs). The longitudinal relaxivity (r) of the resulted QDs@DTDTPA-Gd nanoparticles (NPs) was calculated to be 9.91 mM s, which was 2.

View Article and Find Full Text PDF

Near infrared (NIR) light allows deep tissue penetration and high spatial resolution due to the reduced scattering of long-wavelength photons. NIR light-activatable polymer nanoparticles are widely exploited for enhanced cancer imaging (diagnosis) and therapy owing to their superior photostability, photothermal conversion efficiency (or high emission rate), and minimal toxicity to cells and tissues. This review surveys the most recent advances in the synthesis of different NIR-absorbing and emissive polymer nanoformulations, and their applications for cancer imaging, photothermal therapy, theranostics and combination therapy by delivering multiple small molecule chemotherapeutics.

View Article and Find Full Text PDF

Liposomes are a type of biomimetic nanoparticles generated from self-assembling concentric lipid bilayer enclosing an aqueous core domain. They have been attractive nanocarriers for the delivery of many drugs (e.g.

View Article and Find Full Text PDF

A multifunctional nanotheranostic agent was developed by conjugating both hyaluronic acid and bovine serum albumin coated CuInS-ZnS quantum dots onto the surface of magnetic Prussian blue nanoparticles. The obtained nanoagent could serve as an efficient contrast agent to simultaneously enhance near infrared (NIR) fluorescence and magnetic resonance (MR) imaging greatly. The coexistence of magnetic core and CD44 ligand hyaluronic acid was found to largely improve the specific uptake of the nanoagent by CD44 overexpressed HeLa cells upon applying an external magnetic field.

View Article and Find Full Text PDF

This article reports an effective method to regulate hydrophobic drug release rate from partially silica-coated bicellar nanodisc generated from proamphiphilic organoalkoxysilane and dihexanoylphosphatidylcholine by introducing different molar percentages of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-PEG2000 (DSPE-PEG2000) into planar bilayers of hybrid bicelles. It was found that the drug release rate increased with increasing the molar percentages of DSPE-PEG2000, and 57.38%, 69.

View Article and Find Full Text PDF

This paper successfully fabricated a novel multifunctional theranostic agent (PFOB@PLA/GO/Gd-DTPA NCs) by loading perfluorooctylbromide (PFOB) into poly(lactic acid) (PLA) nanocapsules (NCs) followed by surface functionalization with graphene oxide (GO) and gadolinium-chelate (Gd-DTPA). It was found that the resulting nanoagent could serve as a contrast agent simultaneously to enhance ultrasound (US) and magnetic resonance imaging (MRI). Benefiting from the strong absorption in the near infrared (NIR) region, the nanocapsules could efficiently kill cancer cells under NIR laser irradiation.

View Article and Find Full Text PDF

A theranostic agent has been successfully constructed for fluorescence/ultrasound dual-modal imaging guided photothermal therapy by loading the fluorescent dye R6G into polylactide microcapsules (PLA MCs) followed by deposition of Prussian blue nanoparticles (PB NPs) into the surface of PLA MCs. It was proved that the obtained microcapsules of R6G@PLA/PB MCs could serve as an efficient probe to simultaneously enhance fluorescence imaging and ultrasound imaging greatly in vivo. R6G@PLA/PB MCs exhibited significant photothermal cytotoxicity.

View Article and Find Full Text PDF

Background: The lack of smart and controllable gene vectors with high safety and efficiency is still a main obstruction for clinical applications of gene therapy. Recently, the external physical stimuli, such as near infrared light induced temperature elevation, have been applied to enhance the gene transfection efficiency and specificity. The aim of this paper is to fabricate chitosan functionalized CuS nanoparticles (CuS@CS NPs) with small size and higher biocompatibility for enhanced gene delivery by photothermal effect.

View Article and Find Full Text PDF