Publications by authors named "Xiuli Sim"

Platelets, derived from megakaryocytes, are anucleate cytoplasmic discs that circulate in the blood stream and play major roles in hemostasis, inflammation, and vascular biology. Platelet transfusions are used in a variety of medical settings to prevent life-threatening thrombocytopenia because of cancer therapy, other causes of acquired or inherited thrombocytopenia, and trauma. Currently, platelets used for transfusion purposes are donor derived.

View Article and Find Full Text PDF

Stem cell-derived platelets have the potential to replace donor platelets for transfusion. Defining the platelet-producing megakaryocytes (MKs) within the heterogeneous MK culture may help to optimize the in vitro generation of platelets. Using 2 human stem cell models of megakaryopoiesis, we identified novel MK populations corresponding to distinct maturation stages.

View Article and Find Full Text PDF

Induced pluripotent stem cells were created from a pancreas agenesis patient with a mutation in GATA6. Using genome-editing technology, additional stem cell lines with mutations in both GATA6 alleles were generated and demonstrated a severe block in definitive endoderm induction, which could be rescued by re-expression of several different GATA family members. Using the endodermal progenitor stem cell culture system to bypass the developmental block at the endoderm stage, cell lines with mutations in one or both GATA6 alleles could be differentiated into β-like cells but with reduced efficiency.

View Article and Find Full Text PDF

Platelets are anucleate cytoplasmic discs derived from megakaryocytes that circulate in the blood and have major roles in hemostasis, thrombosis, inflammation, and vascular biology. Platelet transfusions are required to prevent the potentially life-threatening complications of severe thrombocytopenia seen in a variety of medical settings including cancer therapy, trauma, and sepsis. Platelets used in the clinic are currently donor-derived which is associated with concerns over sufficient availability, quality, and complications due to immunologic and/or infectious issues.

View Article and Find Full Text PDF
Article Synopsis
  • Thrombopoiesis is the process where special cells called megakaryocytes make platelets, which are tiny parts of blood that help with clotting.
  • Scientists studied how megakaryocytes from humans and mice release platelets, especially in the lungs of mice, and found some differences between these platelets and normal human platelets.
  • They noticed that platelets released in the lungs are more similar to regular human platelets, while the ones released in a lab setting may not work as well, which is important for medical treatments.
View Article and Find Full Text PDF

Patient-derived induced pluripotent stem cells (iPSCs) are valuable tools for the study of developmental biology and disease modeling. In both applications, genetic correction of patient iPSCs is a powerful method to understand the specific contribution of a gene(s) in development or diseased state(s). Here, we describe a protocol for the targeted integration of a doxycycline-inducible transgene expression system in a safe harbor site in iPSCs.

View Article and Find Full Text PDF

The Wnt gene family consists of structurally related genes encoding secreted signaling molecules that have been implicated in many developmental processes, including regulation of cell fate and patterning during embryogenesis. Previously, we found that Wnt signaling is required for primitive or yolk sac-derived-erythropoiesis using the murine embryonic stem cell (ESC) system. Here, we examine the effect of Wnt signaling on the formation of early hematopoietic progenitors derived from human ESCs.

View Article and Find Full Text PDF

Objective: Two novel mutations (E1506D, E1506G) in the nucleotide-binding domain 2 (NBD2) of the ATP-sensitive K(+) channel (K(ATP) channel) sulfonylurea receptor 1 (SUR1) subunit were detected heterozygously in patients with neonatal diabetes. A mutation at the same residue (E1506K) was previously shown to cause congenital hyperinsulinemia. We sought to understand why mutations at the same residue can cause either neonatal diabetes or hyperinsulinemia.

View Article and Find Full Text PDF