To detect redox potential evolution during the initial stage of an acute wound, a redox-sensitive SERS-active optical fiber was fabricated by integrating redox-sensitive SERS probes in a hole of an optical fiber. The redox-sensitive SERS-active optical fibers carried redox-sensitive SERS probes into the inside of a wound to sense its redox potential. The laser was transmitted to the redox-sensitive SERS probes in the body by optical fibers, and the SERS signals of the redox-sensitive SERS probes were transferred out of the body by optical fibers to indicate the redox potentials in the wound.
View Article and Find Full Text PDFTo detect the antioxidant capacity in living organisms, an antioxidation-responsive SERS-active microneedle was fabricated by adsorbing resazurin on miniature SERS substrates, SERS-active microneedles. The SERS intensity ratio of characterized peaks of resazurin and its product, resorufin, was adopted and verified as an indicator of antioxidant capacity. The feasibility of detection of the antioxidant capacity in living organisms was proved by using the fabricated SERS-active microneedles to detect the antioxidant capacity of lipopolysaccharide-induce inflammatory animal models.
View Article and Find Full Text PDF