Silique development exerts significant impacts on crop yield. CRPs (Cysteine-rich peptides) can mediate cell-cell communication during plant reproduction and development. However, the functional characterization and regulatory mechanisms of CRPs in silique development remain unclear.
View Article and Find Full Text PDFMWW zeolite is one of the commercialized zeolites that shows great promise in heterogeneous catalysis and other interdisciplinary application fields due to its coexisting multi-channel system. The green and controllable synthesis of MWW zeolite is conducive to its more efficient and broader application. Many researchers focus on precisely controlling the dimension, interlayer hydroxyl condensation, and aluminum siting, as well as obtaining MWW with low-toxicity, readily available organic structure directing agents (OSDAs) or without OSDAs.
View Article and Find Full Text PDFThe contaminated liquid mixture containing mucosalivary fluid and blood would be aerosolized during medical procedures, resulting in higher-risk exposures. The novelty of this research is integrating laser visualization and numerical characterization to assess the propagation and evaporation of contaminated droplets, and the interactive effects of humidity and temperature on exposure risks will be numerically evaluated in surgery environments. The numerical model evidenced by experiments can predict the mass balance of ejection droplets, the minimum required fallow time (FT) between appointments, and the disinfection region of greatest concern.
View Article and Find Full Text PDFHerein, we report a highly selective production route for butadiene from γ-valerolactone over zeolite catalysts. The catalytic performance of eight zeolites with different framework topologies were compared, revealing that zeolites with narrower 10-membered ring channels exhibit enhanced selectivity of butadiene. Specifically, ZSM-35 and ZSM-22, featuring the narrowest 10-membered ring channels, demonstrate the highest butadiene selectivity to 61 % and 59 %, respectively.
View Article and Find Full Text PDFJ Colloid Interface Sci
July 2024
Constructing hollow structure into microporous zeolites can improve the accessibility of acid sites located at the inner part and the diffusion property. Hence, the development of an efficient synthesis strategy to acquire zeolites with tunable hollow structures and acidity has attracted much attention. In this work, an innovative tandem synthesis route was proposed to prepare MFI zeolites with diverse hollow structure while maintaining solid yields exceeding 90 %.
View Article and Find Full Text PDFSoil salinization represents an increasingly serious threat to agronomic productivity throughout the world, as rising ion concentrations can interfere with the growth and development of plants, ultimately reducing crop yields and quality. A combination of factors is driving this progressive soil salinization, including natural causes, global climate change, and irrigation practices that are increasing the global saline-alkali land footprint. Salt stress damages plants both by imposing osmotic stress that reduces water availability while also inducing direct sodium- and chlorine-mediated toxicity that harms plant cells.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2024
Inferior diffusion capacity and insufficient acid density hinder the practical application of ZSM-48 zeolite. Finding a simple and practical strategy to simultaneously address these two defects remains a challenge. In response to this dilemma, we developed an unconventional seed-assisted synthesis strategy for Al-rich hierarchical ZSM-48 zeolite.
View Article and Find Full Text PDFProblem Identification: Data on the efficacy of physical exercise interventions for individuals with gynecologic cancer are limited and discordant. The purpose of this review was to determine the benefits of exercise interventions in this population.
Literature Search: The PubMed®, Web of Science, Embase® (Ovid), and Cochrane Central Register of Controlled Trials databases were searched for studies published from January 1, 2010, to November 9, 2022.
As plant growth regulators, gibberellic acid (GA) and CPPU [forchlorfenuron, N-(2-chloro-4-pyridinyl)-N-phenylurea] are widely used in the production of table grapes. However, how these compounds regulate the aroma quality remains unclear. By measuring free and bound aroma compounds in Shine Muscat grapes from eight groups during whole growth period, GA and CPPU were both found to significantly promote the synthesis of acyclic monoterpenes and (E)-2-hexenal, and double applications were found to further increase the aroma compound contents.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2022
Diffusion limitation and acid deficiency are two main challenges that the ZSM-48 zeolite faces in practical application. To date, there have been few effective strategies to solve both problems, simultaneously. Also, it is also a challenge to construct a hollow structure in a one-dimensional (1D) zeolite.
View Article and Find Full Text PDFIn grapevines, the MYB transcription factors play an important regulatory role in the phenylpropanoid pathway including proanthocyanidin, anthocyanin, and flavonoid biosynthesis. However, the role of MYB in abiotic stresses is not clear. In this study, an R2R3-MYB transcription factor, , was isolated from a high drought-tolerant Chinese wild species .
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2022
Designing zeolite catalysts with improved mass transport properties is crucial for restrictive networks of either one- or two-dimensional pore topologies. Here, we demonstrate the synthesis of finned ferrierite (FER), a commercial zeolite with two-dimensional pores, where protrusions on crystal surfaces behave as pseudo nanoparticles. Catalytic tests of 1-butene isomerization reveal a 3-fold enhancement of catalyst lifetime and an increase of 12 % selectivity to isobutene for finned samples compared to corresponding seeds.
View Article and Find Full Text PDFAcute antibody-mediated rejection (AAMR) is an important cause of cardiac allograft dysfunction, and more effective strategies need to be explored to improve allograft prognosis. Interleukin (IL)-6/IL-6R signaling plays a key role in the activation of immune cells including B cells, T cells and macrophages, which participate in the progression of AAMR. In this study, we investigated the effect of IL-6/IL-6R signaling blockade on the prevention of AAMR in a mouse model.
View Article and Find Full Text PDFPurpose: Evaluation of the efficacy and safety of IL-2 in the treatment of drug-susceptible tuberculosis.
Methods: First, the cases of diagnosed drug-susceptible tuberculosis were randomized into two groups-the control group that received the background regimen of isoniazid, rifampin, pyrazinamide, and ethambutol, and the experimental group that received the background regimen plus IL-2. The efficacy and safety evaluations were performed throughout the therapy process as well as 12 months after the treatment completion.
Organic and inorganic structure-directing agents (SDAs) impact Al distributions in zeolite, but the insights into how SDAs manipulate Al distribution have not been elucidated yet. Herein, the roles of different SDAs such as cyclohexylamine (CHA), hexamethylenimine (HMI), and Na in selective Al substitution of MCM-49 zeolite are investigated comprehensively by multinuclear solid-state NMR. The results demonstrate that MCM-49 synthesized with HMI shows relatively more T and T Al, while more T Al is observed using CHA.
View Article and Find Full Text PDFIn time, dental health care has slowly expanded beyond emergency treatment to treat oral diseases. How to reduce the cross-transmission risk in dental surgery has raised much more attention. Considering the lack of consistency of fallow time (FT) in its necessity and duration, the highly sensitive laser light scattering method has been proposed to visualize the airborne lifetime and decay rate of suspended particles in the dental surgery environment.
View Article and Find Full Text PDFThe exposure risk of droplets and aerosols emitted from the oral cavity to the dental professionals and patients has received more attention especially the ongoing outbreak of COVID-19. The aim of this study is to address the question about how the use of the high-volume evacuation (HVE) alters the risk profiles compared with the situation only personal protective equipment (PPE). The risk profiles of the different situations were analyzed in terms of droplet velocity, flow field characteristics, and particle removal efficiency.
View Article and Find Full Text PDFACS Appl Mater Interfaces
July 2021
Introduction of mesopore is critical for applications where mass-transport limitations within microporous networks, especially for zeolite with one-dimensional microporous network, hinder their performance. Generally, the creation of mesopore in zeolite through a direct synthesis route is strongly dependent on complex and expensive organic molecules, which limits their commercial application. Here, we successfully developed a facile synthesis route for preparing ZSM-48 zeolite (*MRE topology) with ultralarge mesoporosity in which typical 1,6-hexylenediamine worked as an organic structure-directing agent, innovatively assisted by a simple crystal growth modifier (tetraethylammonium bromide, TEABr).
View Article and Find Full Text PDFIn the setting of widespread severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) community transmission, reducing the exposure risk on dental professionals and the next patients is the key to reopening dental services in this pandemic environment. The study is motivated by the lack of understanding of the flow-field characteristics and droplet distribution during aerosol-generating procedures. The particle image velocimetry measurements with high temporal and spatial resolutions were performed under ultrasonic scaling in the mockup experimental dental clinic.
View Article and Find Full Text PDF