Therapeutic aptamers targeting vascular endothelial growth factor A (VEGFA) have advanced the development of antiangiogenic drugs for treating choroidal neovascularization (CNV) diseases. However, despite FDA approval for use in neovascular age-related macular degeneration (nAMD), the effective delivery of therapeutic aptamers is hindered by ocular barriers and rapid degradation in biofluids. Here, we demonstrated a microinvasive delivery of VEGFA-targeted aptamers to the ocular fundus using tetrahedral framework nucleic acids (tFNAs).
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Spherical nucleic acids (SNAs) hold substantial therapeutic potential for the delivery of small interfering RNAs (siRNAs). Nevertheless, their potential remains largely untapped due to the challenges of cytosolic delivery. Inspired by the dynamic, spiky architecture of coronavirus, an interface engineering approach based on a tetrahedral DNA framework (tDF) is demonstrated for the development of coronavirus-mimicking SNAs.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Membrane fission involves a crucial step of lipid remodeling, in which the dynamin collar constricts and severs the tubulated lipid membrane at the neck of budding vesicles. Nevertheless, the difficulty in accurately determining the rotational dynamics of live endocytotic vesicles poses a limit on the elucidation of dynamin-induced membrane remodeling for endocytotic vesicle scission. Herein, we designed a DNA-modified gold homodimer (AuHD)-based anisotropic plasmonic probe with uniform surface chemistry, minimizing orientational fluctuation within vesicle encapsulation.
View Article and Find Full Text PDFThe intracellular clustering of anisotropic nanoparticles is crucial to the improvement of the localized surface plasmon resonance (LSPR) for phototherapy applications. Herein, we programmed the intracellular clustering process of spiky nanoparticles (SNPs) by encapsulating them into an anionic liposome via a frame-guided self-assembly approach. The liposome-encapsulated SNPs (lipo-SNPs) exhibited distinct and enhanced lysosome-triggered aggregation behavior while maintaining excellent monodispersity, even in acidic or protein-rich environments.
View Article and Find Full Text PDFEfficient biocatalytic cascade reactions play a crucial role in guiding intricate, specific and selective intracellular transformation processes. However, the catalytic activity of the enzyme cascade reaction in bulk solution was greatly impacted by the spatial morphology and inter-enzyme distance. The programmability and addressability nature of framework nucleic acid (FNA) allows to be used as scaffold for immobilization and to direct the spatial arrangement of enzyme cascade molecules.
View Article and Find Full Text PDFNanoscale vesicles such as synaptic vesicles play a pivotal role in efficient interneuronal communications in vivo. However, the coexistence of single vesicle and vesicle clusters in living cells increases the heterogeneity of vesicle populations, which largely complicates the quantitative analysis of the vesicles. The high spatiotemporal monitoring of vesicle assemblies is currently incompletely resolved.
View Article and Find Full Text PDFThe exponential growth of global data has outpaced the storage capacities of current technologies, necessitating innovative storage strategies. DNA, as a natural medium for preserving genetic information, has emerged as a highly promising candidate for next-generation storage medium. Storing data in DNA offers several advantages, including ultrahigh physical density and exceptional durability.
View Article and Find Full Text PDFSpike-like nanostructures are omnipresent in natural and artificial systems. Although biorecognition of nanostructures to cellular receptors has been indicated as the primary factor for virus infection pathways, how the spiky morphology of DNA-modified nanoparticles affects their cellular uptake and intracellular fate remains to be explored. Here, we design dually emissive gold nanoparticles with varied spikiness (from 0 to 2) to probe the interactions of spiky nanoparticles with cells.
View Article and Find Full Text PDFA molecular classification of diseases that accurately reflects clinical behaviour lays the foundation of precision medicine. The development of in silico classifiers coupled with molecular implementation based on DNA reactions marks a key advance in more powerful molecular classification, but it nevertheless remains a challenge to process multiple molecular datatypes. Here we introduce a DNA-encoded molecular classifier that can physically implement the computational classification of multidimensional molecular clinical data.
View Article and Find Full Text PDFBiomimetic machines that can convert mechanical actuation to adaptive coloration in a manner analogous to cephalopods have found widespread applications at various length scales. At the nanoscale, a transmutable nanomachine with adaptive colors that can sense and mediate cellular or intracellular interactions is highly desirable. Here, we report the design of a DNA framework nanomachine (DFN) that can autonomously change shape in response to pH variations in single synaptic vesicles, which, in turn, displays adaptive fluorescent colors with a mechano-fluorescence actuation mechanism.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2023
Designing an ocular drugs delivery system that can permeate the outer blood-retinal barrier (oBRB) is crucial for the microinvasive or noninvasive treatment of ocular fundus diseases. However, due to the lack of a nanocarrier that can maintain structure and composition at the oBRB, only intravitreal injection at the eyeball can deliver therapeutics directly to the ocular fundus via paracellular and intercellular routes, despite the intraocular operations risks. Here, we demonstrated tetrahedral framework nucleic acids (tFNAs) can penetrate the oBRB and deliver therapeutic nucleic acids to the retina of the rat eye in vivo following subconjunctival injection.
View Article and Find Full Text PDFArtificial molecular machines have found widespread applications ranging from fundamental studies to biomedicine. More recent advances in exploiting unique physical and chemical properties of DNA have led to the development of DNA-based artificial molecular machines. The unprecedented programmability of DNA provides a powerful means to design complex and sophisticated DNA-based molecular machines that can exert mechanical force or motion to realize complex tasks in a controllable, modular fashion.
View Article and Find Full Text PDFA DNA origami nanocaliper is employed as a shape-resolved nanomechanical device, with pH-responsive triplex DNA integrated into the two arms. The shape transition of the nanocaliper results in a subtle difference depending on the local pH that is visible TEM imaging, demonstrating the potential of these nanocalipers to act as a universal platform for pH sensing at the nanoscale.
View Article and Find Full Text PDFCell-cell communications exhibit distinct physiological functions in immune responses and neurotransmitter signaling. Nevertheless, the ability to reconstruct a soma-soma synapse-like junction for probing intercellular communications remains difficult. In this work, we develop a DNA origami nanostructure-based method for establishing cell conjugation, which consequently facilitates the reconstruction of a soma-soma synapse-like junction.
View Article and Find Full Text PDFNucleic acids, including deoxyribonucleic acid (DNA) and ribonucleic acid (RNA), are natural biopolymers composed of nucleotides that store, transmit, and express genetic information. Overexpressed or underexpressed as well as mutated nucleic acids have been implicated in many diseases. Therefore, nucleic acid tests (NATs) are extremely important.
View Article and Find Full Text PDFThe response sensitivity of a molecular sensor is determined by the folding cooperativity of its responsive module. Using an H-responsive dimeric DNA i-motif as a model, we demonstrate the enhancement of its folding cooperativity through preorganization by a DNA framework, and with it we fabricate robust intracellular pH sensors with high response sensitivity.
View Article and Find Full Text PDFReal-time imaging of multiple low-abundance microRNAs (miRNAs) simultaneously in living cells with high sensitivity is of vital importance for accurate cancer clinical diagnosis and prognosis studies. Maintaining stability of nanoprobes resistant to enzyme degradation and enabling effective signal amplification is highly needed for in vivo imaging studies. Herein, a rationally designed one-pot assembled multicolor tetrahedral DNA frameworks (TDFs) by encoding multicomponent nucleic acid enzymes (MNAzymes) was developed for signal-amplified multiple miRNAs imaging in living cells with high sensitivity and selectivity.
View Article and Find Full Text PDFA comprehensive understanding of interactions between nanoparticles (NPs) and biological components is critical to the clinical application of NPs and nanomedicine. Here we provide a step-by-step correlative imaging approach to investigate plasmonic NPs of different aggregation states at the single-cell level. Traceable spherical nucleic acids (SNAs) are fabricated by decorating 50-nm spherical gold NPs with fluorophore-labeled DNA, serving as dually emissive (fluorescent and plasmonic) NPs.
View Article and Find Full Text PDFCirculating tumor cells (CTCs) enable noninvasive liquid biopsy and identification of cancer. Various approaches exist for the capture and release of CTCs, including microfluidic methods and those involving magnetic beads or nanostructured solid interfaces. However, the concomitant cell damage and fragmentation that often occur during capture make it difficult to extensively characterize and analyze living CTCs.
View Article and Find Full Text PDFActive sites of proteins are generally encapsulated within three-dimensional peptide scaffolds that provide the molecular-scale confinement microenvironment. Nevertheless, the ability to tune thermodynamic stability in biomimetic molecular confinement relies on the macromolecular crowding effect of lack of stoichiometry and reconfigurability. Here, we report a framework nucleic acid (FNA)-based strategy to increase thermodynamic stability of aptamers.
View Article and Find Full Text PDFNucleic-acid-based bioaffinity elements, isolated from randomized oligonucleotide libraries through systematic evolution of ligands by exponential enrichment (SELEX), have found numerous applications in chemical biology, medicine, analytical chemistry, and materials science. Aptamers are artificially selected oligonucleotides with target binding abilities, whereas DNAzymes can catalyze chemical reactions in a specific manner. More recently, efforts have been taken to develop bifunctional nucleic acids by coupling catalytic DNAzymes with antibody-mimicking aptamers.
View Article and Find Full Text PDFThe precise control and localization of a single entity on a stiff and rigid interface are crucial for exploring interentity interactions. A critical challenge for the precise positioning of a single entity on a substrate lies in how to construct a solid and flat interface with high positioning precision. Herein, we developed a solid DNA self-assembled nanoraft with high conformational stability by constructing a double-layer DNA origami.
View Article and Find Full Text PDFIntracellular DNA-based hybridization reactions generally occur under tension rather than in free states, which are spatiotemporally controlled in physiological conditions. However, how nanomechanical forces affect DNA hybridization efficiencies in in-vitro DNA assays, for example, biosensors or biochips, remains largely elusive. Here, we design DNA framework-based nanomechanical handles that can control the stretching states of DNA molecules.
View Article and Find Full Text PDFMolecular recognition in cell biological process is characterized with specific locks-and-keys interactions between ligands and receptors, which are ubiquitously distributed on cell membrane with topological clustering. Few topologically-engineered ligand systems enable the exploration of the binding strength between ligand-receptor topological organization. Herein, we generate topologically controlled ligands by developing a family of tetrahedral DNA frameworks (TDFs), so the multiple ligands are stoichiometrically and topologically arranged.
View Article and Find Full Text PDF