Background: To establish a strategy for stem cell-related tissue regeneration therapy, human gingival mesenchymal stem cells (hGMSCs) were loaded with three-dimensional (3D) bioengineered Matrigel matrix scaffolds in high-cell density microtissues to promote local tissue restoration.
Methods: The biological performance and stemness of hGMSCs under 3D culture conditions were investigated by viability and multidirectional differentiation analyses. A Sprague‒Dawley (SD) rat full-thickness buccal mucosa wound model was established, and hGMSCs/Matrigel were injected into the submucosa of the wound.
Non-syndromic oligodontia is characterized by the absence of six or more permanent teeth, excluding third molars, and can have aesthetic, masticatory, and psychological consequences. Previous studies have shown that is associated with autosomal dominant forms of oligodontia but the precise molecular mechanisms are still unknown. Whole-exome and Sanger sequencing were performed on a cohort of approximately 28 probands with NSO, for mutation analysis.
View Article and Find Full Text PDFCDR1as is a well-identified circular RNA with regulatory roles in a variety of physiological processes. However, the effects of CDR1as on stemness of periodontal ligament stem cells (PDLSCs) and the underlying mechanisms remain unclear. In this study, we detect CDR1as in human PDLSCs, and subsequently demonstrate that CDR1as maintains PDLSC stemness.
View Article and Find Full Text PDFObjectives: miR-21 can promote osteoblast differentiation of periodontal ligament stem cells. However, the effect of miR-21 on bone remodelling in the midpalatal suture is unclear. This study aimed to elucidate the effects of miR-21 on the midpalatal suture bone remodelling by expanding the palatal sutures.
View Article and Find Full Text PDFSince publication of this article, the authors found a mistake in the drawing figure 5e. After careful checking of all original data, the authors discovered that they had submitted the wrong composite figure 5e. The correct Figure 5 is included below.
View Article and Find Full Text PDFPeriodontal ligament stem cells (PDLSCs) are mesenchymal stem cells derived from dental tissues with multidirectional differentiation potential and excellent self-renewing ability. Recently, long noncoding RNAs (lncRNAs) have been shown to play important roles in MSC osteogenic differentiation. In this study, we found that taurine upregulated gene 1 (TUG1), an evolutionarily conserved and widely present lncRNA was significantly upregulated in osteogenically induced PDLSCs compared to their undifferentiated counterparts.
View Article and Find Full Text PDFBackground: Researchers have been exploring the molecular mechanisms underlying the control of periodontal ligament stem cell (PDLSC) osteogenic differentiation. Recently, long noncoding RNAs (lncRNAs) and circular RNAs (circRNAs) were shown to function as competitive endogenous RNAs (ceRNAs) to regulate the effect of microRNAs (miRNAs) on their target genes during cell differentiation. However, comprehensive identification and integrated analysis of lncRNAs and circRNAs acting as ceRNAs during PDLSC osteogenic differentiation have not been performed.
View Article and Find Full Text PDFBackground: Cryopreservation has been extensively applied to the long-term storage of a diverse range of biological materials. However, no comprehensive study is currently available on the cryopreservation of periodontal ligament stem cell (PDLSC) sheets which have been suggested as excellent transplant materials for periodontal tissue regeneration. The aim of this study is to investigate the effect of cryopreservation on the structural integrity and functional viability of PDLSC sheets.
View Article and Find Full Text PDF