Publications by authors named "Xiufeng Zhong"

Ion channels in retinal pigment epithelial (RPE) cells are crucial for retinal health and vision functions. Defects in such channels are intricately associated with the development of various retinopathies that cause blindness. Human pluripotent stem cells (hPSC)-derived RPE cells, including those from human-induced pluripotent stem cells (hiPSC) and human embryonic stem cells (hESC), have been used as in vitro models for investigating pathogenic mechanisms and screening potential therapeutic strategies for retinopathies.

View Article and Find Full Text PDF

Leber's congenital amaurosis (LCA) is a complex inherited retinal dystrophy characterized by severe vision loss and even blindness early in life, caused by more than 38 genes. Variations in RDH12 were found to be responsible for LCA. We successfully generated two induced pluripotent stem cell lines from a patient diagnosed with LCA carrying the RDH12 compound heterozygous mutations c.

View Article and Find Full Text PDF

Retinoblastoma (RB) is a common intraocular malignancy mostly caused by variation of the tumour suppressor gene RB1. In this study, we successfully generated two induced pluripotent stem cell (iPSC) lines from an infant with non-heritable RB. Both cell clones exhibited typical iPSC characteristics with normal karyotypes, consistent pluripotency markers expression and the capability of trilineage differentiation.

View Article and Find Full Text PDF

Purpose: To predict prognosis in HIV-negative cryptococcal meningitis (CM) patients by developing and validating a machine learning (ML) model.

Methods: This study involved 523 HIV-negative CM patients diagnosed between January 1, 1998, and August 31, 2022, by neurologists from 3 tertiary Chinese centers. Prognosis was evaluated at 10 weeks after the initiation of antifungal therapy.

View Article and Find Full Text PDF

CLCN2 encodes a two-pore homodimeric chloride channel protein (CLC-2) that is widely expressed in human tissues. The association between Clcn2 and the retina is well-established in mice, as loss-of-function of CLC-2 can cause retinopathy in mice; however, the ocular phenotypes caused by CLCN2 mutations in humans and the underlying mechanisms remain unclear. The present study aimed to define the ocular features and reveal the pathogenic mechanisms of CLCN2 variants associated with retinal degeneration in humans using an in vitro overexpression system, as well as patient-induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) cells and retinal organoids (ROs).

View Article and Find Full Text PDF

X-linked juvenile retinoschisis (XLRS), caused by the mutation of RS1 gene, is one of the most common causes of macular degeneration for male adolescents. The mutations and clinical manifestations of the disease are diverse. Neither the relationship between the genotypes and phenotypes, nor the radical treatment like gene therapy has been found by now.

View Article and Find Full Text PDF

PROM1-related retinal dystrophy (PROM1-RD) is a group of hereditary retinal disorder characterized by the progressive damage of the photoreceptors. We generated and identified two induced pluripotent stem cell (iPSC) lines carrying homozygous or heterozygous nonsense mutation c.619G > T (p.

View Article and Find Full Text PDF

Human pluripotent stem cell-derived retinal pigment epithelium (iRPE) is an attractive cell source for disease modeling and cell replacement therapy of retinal disorders with RPE defects. However, there are still challenges to develop appropriate culture conditions close to in vivo microenvironment to generate iRPE sheets, which mimic more faithfully the characteristics and functions of the human RPE cells. Here, we developed a simple, novel platform to construct authentic iRPE sheets using human amniotic membrane (hAM) as a natural scaffold.

View Article and Find Full Text PDF

Müller glial cells (MGCs) play important roles in human retina during physiological and pathological conditions. However, the development process of human MGCs remains unclear, and how to obtain large numbers of human MGCs with high quality faces technical challenges, which hinder the further study and application of MGCs. Human induced pluripotent stem cell (hiPSC)-derived retinal organoids (ROs) with all retinal cell subtypes provide an unlimited cell resource and a platform for the studies of retinal development and disorders.

View Article and Find Full Text PDF

Stem cell-based cell therapies are considered to be promising treatments for retinal disorders with dysfunction or death of photoreceptors. However, the enrichment of human photoreceptors suitable for transplantation has been highly challenging so far. This study aimed to generate a photoreceptor-specific reporter human induced pluripotent stem cell (hiPSC) line using CRISPR/Cas9 genome editing, which harbored an enhanced green fluorescent protein () sequence at the endogenous locus of the pan photoreceptor marker recoverin () After confirmation of successful targeting and gene stability, three-dimensional retinal organoids were induced from this reporter line.

View Article and Find Full Text PDF

The mechanisms underlying retinal development have not been completely elucidated. Extracellular vesicles (EVs) are novel essential mediators of cell-to-cell communication with emerging roles in developmental processes. Nevertheless, the identification of EVs in human retinal tissue, characterization of their cargo, and analysis of their potential role in retina development has not been accomplished.

View Article and Find Full Text PDF

Retinal degenerative diseases are the main causes of irreversible blindness without effective treatment. Pluripotent stem cells that have the potential to differentiate into all types of retinal cells, even mini-retinal tissues, hold huge promises for patients with these diseases and many opportunities in disease modeling and drug screening. However, the induction process from hPSCs to retinal cells is complicated and time-consuming.

View Article and Find Full Text PDF

Background: Retinal degenerative disorders (RDs) are the main cause of blindness without curable treatment. Our previous studies have demonstrated that human-induced pluripotent stem cells can differentiate into retinal organoids with all subtypes of retina, which provides huge promise for treating these diseases. Before these methods can be realized, RD animal models are required to evaluate the safety and efficacy of stem cell therapy and to develop the surgical tools and procedures for cell transplantation in patients.

View Article and Find Full Text PDF

CLCN2-related leukoencephalopathy (CC2L) is a rare disease due to autosomal recessive loss-of-function mutations in CLCN2 gene. We generated an induced pluripotent stem cell (iPSC) line (SKLOi001-A) from urine cells isolated from a CC2L patient carrying a homozygotic mutation: c.2257C>T (p.

View Article and Find Full Text PDF

This study was conducted to determine the dynamic Islet1 and Brn3 (POU4F) expression pattern in the human fetal retina and human-induced pluripotent stem cell- (hiPSC-) derived retinal organoid. Human fetal eyes from 8 to 27 fetal weeks (Fwks), human adult retina, hiPSC-derived retinal organoid from 7 to 31 differentiation weeks (Dwks), and rhesus adult retina were collected for cyrosectioning. Immunofluorescence analysis showed that Islet1 was expressed in retinal ganglion cells in the fetal retina, human adult retina, and retinal organoids.

View Article and Find Full Text PDF

RPE65-associated Leber congenital amaurosis (LCA) is one of highly heterogeneous, early onset, severe retinal dystrophies with at least 130 gene mutation sites identified. Their pathogenicity has not been directly clarified due to lack of diseased cells. Here, we generated human-induced pluripotent stem cells (hiPSCs) from one putative LCA patient carrying two novel mutations with c.

View Article and Find Full Text PDF

Purpose: Retinal pigment epithelium (RPE) and neural retina could be generated concurrently through retinal organoid induction approaches using human induced pluripotent stem cells (hiPSCs), providing valuable sources for cell therapy of retinal degenerations. This study aims to enrich and expand hiPSC-RPE acquired with this platform and explore characteristics of serially passaged RPE cells.

Methods: RPE has been differentiated from hiPSCs with a published retinal organoid induction method.

View Article and Find Full Text PDF

Urine cells, a body trash, have been successfully reprogrammed into human induced pluripotent stem cells (U-hiPSCs) which hold a huge promise in regenerative medicine. However, it is unknown whether or to what extent U-hiPSCs can generate retinal cells so far. With a modified retinal differentiation protocol without addition of retinoic acid (RA), our study revealed that U-hiPSCs were able to differentiate towards retinal fates and form 3D retinal organoids containing laminated neural retina with all retinal cell types located in proper layer as in vivo.

View Article and Find Full Text PDF

Effective derivation of three-dimensional (3D) retinal tissue from human-induced pluripotent stem cells (hiPSCs) could provide models for drug screening and facilitate patient-specific retinal cell replacement therapy. However, some hiPSC lines cannot undergo 3D self-organization and show inadequate differentiation efficiency to meet clinical demand. In this study, we developed an optimized system for derivation of 3D retinal tissue.

View Article and Find Full Text PDF

We have identified a discrete, focal telomere DNA expansion phenotype in the photoreceptor cell layer of normal, non-neoplastic human retinas. This phenotype is similar to that observed in a subset of human cancers, including a large fraction of tumors of the central nervous system, which maintain their telomeres via the non-telomerase-mediated alternative lengthening of telomeres (ALT) mechanism. We observed that these large, ultra-bright telomere DNA foci are restricted to the rod photoreceptors and are not observed in other cell types.

View Article and Find Full Text PDF

Background: Wolfram syndrome (WS), caused by mutations of the Wolfram syndrome 1 (WFS1) gene on chromosome 4p16.1, is an autosomal recessive disorder characterized by diabetes insipidus (DI), neuro-psychiatric disorders, hearing deficit, and urinary tract anomalies.

Case Presentation: Here we report a 11-year-old Chinese boy who presented with visual loss, was suspected with optic neuritis (ON) or neuromyelitis optica (NMO) and referred to our department for further diagnosis.

View Article and Find Full Text PDF

Induced pluripotent stem cells (iPSCs) have provided new opportunities for motor neuron disease (MND) modeling, drug screening, and cellular therapeutic development. Among the various types of iPSCs, urine-derived iPSCs have become a promising source of stem cells because they can be safely and noninvasively isolated and easily reprogrammed. Here, for the first time, we differentiated urine-derived iPSCs (urine-iPSCs) into motor neurons (MNs) and compared the capacity of urine-iPSCs and cord-blood-derived iPSCs (B-iPSCs) to differentiate into MNs.

View Article and Find Full Text PDF

Purpose: To assess the appropriate dose of sodium nitroprusside for establishing acute retinal photoreceptor degeneration models in rabbits.

Methods: Sodium nitroprusside (SNP) was delivered intravitreously. Sixteen New Zealand White rabbits are divided into four groups randomly: 0.

View Article and Find Full Text PDF

Unlabelled: Numerous therapeutic procedures in modern medical research rely on the use of tissue engineering for the treatment of retinal diseases. However, the cell source and the transplantation method are still a limitation. Previously, it was reported that a self-organizing three-dimensional neural retina can be induced from human-induced pluripotent stem cells (hiPSCs).

View Article and Find Full Text PDF

The derivation and maintenance of human pluripotent stem cells (hPSCs) in stable naïve pluripotent states has a wide impact in human developmental biology. However, hPSCs are unstable in classical naïve mouse embryonic stem cell (ESC) WNT and MEK/ERK signal inhibition (2i) culture. We show that a broad repertoire of conventional hESC and transgene-independent human induced pluripotent stem cell (hiPSC) lines could be reverted to stable human preimplantation inner cell mass (ICM)-like naïve states with only WNT, MEK/ERK, and tankyrase inhibition (LIF-3i).

View Article and Find Full Text PDF