Publications by authors named "Xiufeng Ju"

Brain metastases from breast cancer are the most frequent brain metastasis in women, which are often difficult to be surgically removed due to the multifocal and infiltrative intracranial growth patterns. Cytotoxic drugs have potent anti-breast cancer properties. However, owing to the toxic side effects and the blood-brain barrier (BBB), these drugs cannot be fully and aggressively exploited with systemic administration and hence have very limited application for brain metastases.

View Article and Find Full Text PDF

Breast cancer brain metastases (BCBMs) are one of the most difficult malignancies to treat due to the intracranial location and multifocal growth. Chemotherapy and molecular targeted therapy are extremely ineffective for BCBMs due to the inept brain accumulation because of the formidable blood‒brain barrier (BBB). Accumulation studies prove that low density lipoprotein receptor-related protein 1 (LRP1) is promising target for BBB transcytosis.

View Article and Find Full Text PDF

Microvessels of the blood-brain barrier (BBB) exclusively express the major facilitator superfamily domain-containing protein 2a (Mfsd2a), which is the key transporter for docosahexaenoic acid uptake into the brain. Mfsd2a suppresses caveolae-mediated transcytosis to regulate BBB transcellular permeability via controlling lipid composition of BBB endothelial cells. It is speculated that Mfsd2a can restrain BBB crossing efficiency and brain accumulation efficiency of brain-targeting drug delivery systems, which penetrate the BBB often through the receptor-mediated transcytosis pathway.

View Article and Find Full Text PDF

Breast cancer brain metastases (BCBM) represent a major cause of morbidity and mortality among patients with breast cancer. Systemic drug therapy, which is usually effective against peripheral breast cancers, is often ineffective on BCBM due to its poor penetration through the blood-brain tumor barrier (BTB). In this study, prostate-specific membrane antigen (PSMA) with internalization function was found to be specifically up-regulated on BCBM-associated BTB while barely detectable in normal blood-brain barrier (BBB).

View Article and Find Full Text PDF

Brain metastases present mostly multifocal, infiltrative and co-opting growth with the blood-brain barrier (BBB) remaining intact. The BBB, as the barrier of drug delivery to such lesions, is the major cause of the failure of systemic drug therapy and needs to be conquered. Angiopep-2 ligates the low density lipoprotein receptor related protein 1 (LRP1) on brain microvascular endothelial cells (BMECs) to drive transcytosis for BBB crossing.

View Article and Find Full Text PDF

Opal shale, as a naturally occurring and noncrystalline silica material with porous structure, has the potential to be a drug delivery carrier. In this study, we obtained opal shale nanoparticles (OS NPs) through the techniques of ultrasonic emulsion and differential centrifugation. The OS NPs exhibited markedly lower cytotoxicity than crystalline mesoporous silica nanoparticles.

View Article and Find Full Text PDF