Unlabelled: Carbapenem-resistant (CRMM) isolates, particularly those producing Klebsiella pneumoniae carbapenemase-2 (KPC-2) or New Delhi metallo-β-lactamase-1 (NDM-1), are increasingly being recognized as causative agents of nosocomial infections. However, systematic phylogeography and genetic characterization of these isolates worldwide are still lacking. Here, through seven years of surveillance of CRMM in a tertiary hospital, we analyzed the genomic characteristics of - or -positive CRMM isolates.
View Article and Find Full Text PDFThe mechanisms of iron-catalyzed [4 + 2] cycloadditions of unactivated dienes were investigated using density functional theory calculations. The calculation results show that the reaction involves sequential key steps of an initial ligand exchange followed by oxidative coupling, isomerization to form a seven-membered ferracycle intermediate, and C-C reductive elimination to form the cyclohexene product. The C-C reductive elimination step is shown to be the rate-determining step of the catalytic cycle.
View Article and Find Full Text PDFSupramolecular dynamic room temperature phosphorescence (RTP) is the focus of current research because of its wide application in biological imaging and information anti-counterfeiting. Herein, a time-dependent supramolecular lanthanide phosphorescent 4D assembly material with multicolor luminescence including white, which is composed of 4-(4-bromophenyl)-pyridine salt derivative (G), inorganic clay (LP)/Eu complex and pyridine dicarboxylic acid (DPA) is reported. Compared with the self-assembled nanoparticle G, the lamellar assembly G/LP showed the double emission of fluorescence at 380 nm and phosphorescence at 516 nm over time.
View Article and Find Full Text PDFAlzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by memory impairment and cognitive decline, ultimately culminating in dementia. This study aims to evaluate cerebrovascular reactivity (CVR) and functional connectivity (FC) in patients with AD and mild cognitive impairment (MCI) using resting-state functional magnetic resonance imaging (rs-fMRI), bypassing the requirement for hypercapnia. The study cohort comprised 53 AD patients, 38 MCI patients, and 39 normal control (NC) subjects.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Herein, we reported a biofuel-driven recyclable chiral supramolecular transfer container based on hexacationic triphenylamine cage and nucleotides. Possessing rotatable paddle rigid backbones, the artificial receptor effectively encapsulated nucleotides with a high binding constant up to 5.37×10 M in water, displaying guest-induced efficient fluorescence enhancement with quantum yield increased from 6.
View Article and Find Full Text PDFHerein, thermally responsive reversible chiral supramolecules are reported, constructed by the chirality transfer from tripeptides to achiral network supramolecular organic frameworks (SOF) based on configurationally stepping confinement, which displayed not only highly selective reversible chirality transfer but also efficient enhanced near-infrared (NIR) luminescence. Taking advantage of macrocyclic confinement, CB[8] separately encapsulated two kinds of tetracationic bis(phenothiazines) derivatives (G1, G2) at 2:1 stoichiometric to form organic 2D SOFs, efficiently enhancing 12.6 fold NIR luminescence and blueshifted from 705 to 680 nm for G1, and redshifted from 695 to 710 nm for G2, respectively.
View Article and Find Full Text PDFPure organic phosphorescence resonance energy transfer is a research hotspot. Herein, a single-molecule phosphorescence resonance energy transfer system with a large Stokes shift of 367 nm and near-infrared emission is constructed by guest molecule alkyl-bridged methoxy-tetraphenylethylene-phenylpyridines derivative, cucurbit[n]uril (n = 7, 8) and β-cyclodextrin modified hyaluronic acid. The high binding affinity of cucurbituril to guest molecules in various stoichiometric ratios not only regulates the topological morphology of supramolecular assembly but also induces different phosphorescence emissions.
View Article and Find Full Text PDFRecently, the non-covalently activated supramolecular scaffold method has become a prominent research area in the field of intelligent materials. Here, the inorganic clay (LP) promoted the AIE properties of 4,4',4″,4‴-(ethene-1,1,2,2-tetrayltetrakis(benzene-4,1-diyl))tetrakis(1-ethylpyridin-1-ium) (P-TPE), showing an astonishing 42-fold enhancement of the emission intensity of the yellow-green luminescence and a 34-fold increase of the quantum yield via organic-inorganic supramolecular strategy as well as the efficient light-harvesting properties (energy transfer efficiency up to 33 %) after doping with the dye receptor Rhodamine B. Furthermore, the full-color spectral regulation, including white light, was achieved by adjusting the ratio of the donor to the acceptor component and co-assembling with the carbon dots (CD).
View Article and Find Full Text PDFThe mechanism of Ni-catalyzed carboxylation of aryl C(sp)-S bonds with CO was studied for the first time by density functional theory calculations. We first proposed another possible reaction pathway in which CO insertion occurs prior to reduction. Then, we performed calculations on all proposed reaction pathways, and our calculation results show that the pathway in which reduction occurs prior to CO insertion is the favored pathway for this reaction.
View Article and Find Full Text PDFThe mechanisms of Ni-catalyzed 3,3-dialkynylation of 2-aryl acrylamide have been investigated by using density functional theory calculations. The result shows that this reaction includes double alkynylation, which involves sequential key steps of vinylic C-H bond activation, successive oxidative addition, and reductive elimination, with the second C-H bond activation being the rate-determining step. C-H and N-H bond activation occurs via the concerted metalation-deprotonation mechanism.
View Article and Find Full Text PDFDeep multi-view clustering, which can obtain complementary information from different views, has received considerable attention in recent years. Although some efforts have been made and achieve decent performances, most of them overlook the structural information and are susceptible to poor quality views, which may seriously restrict the capacity for clustering. To this end, we propose Structural deep Multi-View Clustering with integrated abstraction and detail (SMVC).
View Article and Find Full Text PDFBackground: Cerebral small vessel disease lacks specific clinical manifestations, and extraction of valuable features from multimodal images is expected to improve its diagnostic accuracy. In this study, we used deep learning techniques to segment cerebral small vessel disease imaging markers in multimodal magnetic resonance images and analyze them with clinical risk factors.
Methods And Results: We recruited 211 lacunar stroke patients and 83 control patients.
World J Gastroenterol
February 2024
Background: Gastric cancer (GC) is associated with high mortality rates. Bile acids (BAs) reflux is a well-known risk factor for GC, but the specific mechanism remains unclear. During GC development in both humans and animals, BAs serve as signaling molecules that induce metabolic reprogramming.
View Article and Find Full Text PDFHerein, a type of light- and heat-driven flexible supramolecular polymer with reversibly long-lived phosphorescence and photochromism is constructed from acrylamide copolymers with 4-phenylpyridinium derivatives containing a cyano group (P-CN, P-oM, P-mM), sulfobutylether-β-cyclodextrin (SBCD), and polyvinyl alcohol (PVA). Compared to their parent solid polymers, these flexible supramolecules based on the non-covalent cross-linking of copolymers, SBCD, and PVA efficiently boost the phosphorescence lifetimes (723.0 ms for P-CN, 623.
View Article and Find Full Text PDFMethylenecyclopropanes (MCPs) have emerged as versatile building blocks in synthetic chemistry because of their unique reactivity. However, metal-catalyzed hydrosilylation of MCPs has met with very limited successes. In this paper, catalytic selective hydrosilylations of MCPs with some primary silanes using an ene-diamido lanthanum ate complex as the catalyst were described.
View Article and Find Full Text PDFThe mechanism of the Ni-Al bimetallic-catalyzed C-H cyclization to construct tricyclic imidazoles is investigated using density functional theory calculations. The calculation result shows that the reaction mechanism involves sequential steps of substrate coordination, ligand-to-ligand hydrogen transfer (LLHT), and C-C reductive elimination to produce the final product tricyclic imidazole. The LLHT step is calculated to be the rate-determining step.
View Article and Find Full Text PDFThe mechanism of the Ac-Gly-OH-assisted palladium-catalyzed [3 + 2] annulation of aromatic amides with maleimides is investigated using density functional theory calculations. The results show that the reaction undergoes the sequential steps of N-H bond deprotonation, first benzylic C-H bond activation, maleimide insertion, second -C-H bond activation, reductive elimination, and oxidation. The external ligand Ac-Gly-OH acts as the internal base for hydrogen abstraction in the first benzylic C-H bond activation.
View Article and Find Full Text PDFAbnormal copper ions (Cu) and biothiols have potential impacts on environmental pollution and human health, so the detection of these substances with high selectivity and sensitivity has become an important research topic. In this study, we designed and synthesized two fluorescent probes (L and L) based on naphthalene and anthracene derivatives that could specifically detect Cu and biothiols. Owing to the paramagnetic effect of Cu, the strong fluorescent intensity was quenched after the addition of Cu.
View Article and Find Full Text PDFRecently, deep clustering has been extensively employed for various data mining tasks, and it can be divided into auto-encoder (AE)-based and graph neural networks (GNN)-based methods. However, existing AE-based methods fall short in effectively extracting structural information, while GNN suffer from smoothing and heterophily. Although methods that combine AE and GNN achieve impressive performance, there remains an inadequate balance between preserving the raw structure and exploring the underlying structure.
View Article and Find Full Text PDFIntelligent molecular machines that are driven by light, electricity, and temperature have attracted considerable interest in the fields of chemistry, materials, and biology. Herein, a unimolecular chiral stepping inversion molecular machine (SIMM) was constructed by a coupling reaction between dibromo pillar[5]arene and a tetrathiafulvalene (TTF) derivative (PT3 and PT5). Compared with the longer aliphatic linker PT5, PT3 with a shorter aliphatic linker shows chiral stepping inversion, achieving chiral inversion under a two-electron redox potential.
View Article and Find Full Text PDFMetal-complex-based materials for lithium storage have attracted great interest due to their highly designable structures with multiple active sites and well-defined lithium transport pathways. Their cycling and rate performances, however, are still constrained by structural stability and electrical conductivity. Herein, we present two hydrogen-bonded complex-based frameworks with excellent lithium storage capability.
View Article and Find Full Text PDFThe mechanism of iron-catalyzed intramolecular [2 + 2] cycloaddition and cycloisomerization of enyne acetates has been investigated with DFT computations. Both mechanisms start the catalytic cycle from the stepwise 1,2-acyloxy migration to afford the iron carbene. The [2 + 2] cycloaddition mechanism involves subsequent key steps of [2 + 2] cycloaddition, 1,2-acyloxy migration, and reductive elimination to generate the azabicyclo [3.
View Article and Find Full Text PDFPersistent organic pollutants (POPs) exist widely in the environment and place significant impact on human health by bioaccumulation. Efficient recognition of POPs and their removal are highly challenging tasks because their specific structures interact often very weakly with the capture materials. Herein, a molecular nanocage () is studied as an efficient sensing and sorbent material for POPs, which is demonstrated by a representative and stable perfluorooctane sulfonate (PFOS) substrate containing a hydrophilic sulfonic group and a hydrophobic fluoroalkyl chain.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2023
Methods for C-H cyanation of pyridines are rare. Here, we report a method for C3-selective cyanation of pyridines by a tandem process with the reaction of an in situ generated dihydropyridine with a cyano electrophile as the key step. The method is suitable for late-stage functionalization of pyridine drugs.
View Article and Find Full Text PDFThe construction of lanthanide multicolor luminescent materials with tunable photoluminescence properties has been developed as one of the increasingly significant topics and shown inventive applications in miscellaneous fields. However, fabricating such materials based on synergistically assembly-induced emission rather than simple blending of different fluorescent dyes together still remains a challenge. Herein, we report a europium-based noncovalent polymer with tunable full-color emission, which is constructed from the 2,6-pyridinedicarboxylic acid-bearing bromophenylpyridinium salt.
View Article and Find Full Text PDF