Publications by authors named "Xiufang Song"

Although two-coordinate Cu(I) complexes are highly promising low-cost emitters for organic light-emitting diodes (OLEDs), the exposed metal center in the linear coordination geometry makes them suffer from poor stability. Herein, we describe a strategy to develop stable carbene-Cu-amide complexes through installing intramolecular noncovalent Cu⋅⋅⋅H interactions. The employment of 13H-dibenzo[a,i]carbazole (DBC) as the amide ligand leads to short Cu⋅⋅⋅H distances in addition to the Cu-N coordination bond.

View Article and Find Full Text PDF
Article Synopsis
  • A new type of carbene-anilido boron complexes has been created, which exhibit strong fluorescence and a significant Stokes shift due to their unique charge-transfer excited states.
  • These complexes differ from conventional BODIPY dyes, offering new optical properties.
  • Additionally, by incorporating a chiral ligand, the dyes can be modified to show circularly polarized luminescence.
View Article and Find Full Text PDF

Two-coordinate coinage metal complexes have been exploited for various applications. Herein, a new donor-metal-acceptor (D-M-A) complex PZI-Au-TOT, using bulky pyrazine-fused N-heterocyclic carbene (PZI) and trioxytriphenylamine (TOT) ligands, was synthesized. PZI-Au-TOT displays decent thermally activated delayed fluorescence (TADF) with a quantum yield of 93 % in doped film.

View Article and Find Full Text PDF

Multi-resonance (MR) type emitters have emerged as highly promising candidates for high-resolution organic light-emitting diodes (OLEDs). However, thermally activated delayed fluorescence (TADF) emissions with simultaneous short excited state lifetimes and ultrapure blue color (a CIE close to 0.046 and an emission peak >440 nm) have rarely been obtained for MR emitters.

View Article and Find Full Text PDF

Two-coordinate Au(I) complexes with a donor-metal-acceptor (D-M-A) structure have shown rich luminescent properties. However, charge-neutral dinuclear donor-metal-acceptor type Au(I) complexes featuring aurophilic interactions have been seldom explored. Herein, we describe the structures and photoluminescence properties of two dinuclear Au(I) complexes, namely DiAu-Ph and DiAu-Me.

View Article and Find Full Text PDF

Long COVID, characterized by a persistent symptom spectrum following SARS-CoV-2 infection, poses significant health, social, and economic challenges. This review aims to consolidate knowledge on its epidemiology, clinical features, and underlying mechanisms to guide global responses; We conducted a literature review, analyzing peer-reviewed articles and reports to gather comprehensive data on long COVID's epidemiology, symptomatology, and management approaches; Our analysis revealed a wide array of long COVID symptoms and risk factors, with notable demographic variability. The current understanding of its pathophysiology suggests a multifactorial origin yet remains partially understood.

View Article and Find Full Text PDF

To establish an in vitro biological activity detection method for luteinizing hormone (LH), the hLHCGR-CREB-HEK293 cell line was constructed to stably express human luteinizing hormone/chorionic gonadotropin receptor (hLHCGR). After optimization, the rhLH starting working concentration was 800 mIU/mL with 4-fold serial dilutions, 10 concentrations and an incubation time of 5 h. The method was confirmed to be highly specific, with good accuracy, precision and linearity, meeting the needs of process research and release testing, and can be used as a routine detection method for LH biological activity.

View Article and Find Full Text PDF

Through-space charge transfer (TSCT) has been proven effective for designing thermally activated delayed fluorescence (TADF) emitters due to the separation of the frontier molecular orbitals. Although tuning of the interaction between the donor and acceptor by controlling the conformation is known to be crucial for the photophysical properties of TSCT excited states, it remains a challenge to realize efficient red and deep-red emissions. Herein, we designed two TSCT molecules, namely TPXZ-QX and TPXZ-2QX, by using oxygen-bridged triphenylamine (TPXZ) as the electron donor with enhanced planarity and electron-donating capability.

View Article and Find Full Text PDF
Article Synopsis
  • Helicenes show promise as molecules capable of circularly polarized luminescence (CPL), but integrating high color purity with efficient triplet-harvesting in blue light-emitting diodes (CP-OLEDs) is challenging.* -
  • A new series of hetero[6]helicene-based emitters is developed, enhancing deep-blue emission while maintaining the original molecule's characteristics, resulting in lower reorganization energy and higher photoluminescence quantum yield.* -
  • These advancements lead to efficient devices with deep-blue emission in the desired color range, record external quantum efficiencies of up to 29.3%, and distinct circularly polarized electroluminescence, highlighting the effectiveness of the helical structure design in
View Article and Find Full Text PDF

"Carbene-metal(I)-amide" (CMA) complexes have garnered significant attention due to their remarkable properties and potential TADF applications in organic electronics. However, the atomistic working mechanism is still elusive. Herein, we chose two CMA complexes, , cyclic (alkyl)(amino) carbene-copper[gold](I)-carbazole (CAAC-Cu[Au]-Cz), and employed both DFT and TD-DFT methods, in combination with radiative and nonradiative rate calculations, to investigate geometric and electronic structures of these two complexes in the ground and excited states, including orbital compositions, electronic transitions, absorption and emission spectra, and the luminescence mechanism.

View Article and Find Full Text PDF

B- and N-embedded multiple resonance (MR) type thermally activated delayed fluorescence (TADF) emitters usually suffer from slow reverse intersystem crossing (RISC) process and aggregation-caused emission quenching. Here, we report the design of a sandwich structure by placing the B-N MR core between two electron-donating moieties, inducing through-space charge transfer (TSCT) states. The proper adjusting of the energy levels brings about a 10-fold higher RISC rate in comparison with the parent B-N molecule.

View Article and Find Full Text PDF

Sustainable livelihoods (SL) have emerged as a crucial area of focus in global environmental change research, aligning with the Sustainable Development Goals (SDGs). This field is rapidly gaining prominence in sustainability science and has become one of the primary research paradigms. In our study, we conducted scientometrics analysis using the ISI Web of Science core collection database to examine research patterns and frontier areas in SL research.

View Article and Find Full Text PDF

Transition metal complexes exhibiting thermally activated delayed fluorescence (TADF) remain underdeveloped for organic light-emitting diodes (OLEDs). Here, we describe a design of TADF Pd(II) complexes featuring metal-perturbed intraligand charge-transfer excited states. Two orange- and red-emitting complexes with efficiencies of 82 and 89% and lifetimes of 2.

View Article and Find Full Text PDF

Grassland degradation has become a global social-ecological problem, which seriously limits the sustainability of indigenous people's livelihoods. Bibliometrics, a type of analysis based on the Science Citation Index-Expanded (SCI-E), was therefore performed to explore the research trends and focus areas of studies on sustainable livelihoods (SLs). We conducted an in-depth analysis of 489 research publications and their 25,144 references from 1991 to 2020.

View Article and Find Full Text PDF

Two-coordinate donor-metal-acceptor type coinage metal complexes displaying efficient thermally activated delayed fluorescence (TADF) have been unveiled to be highly appealing candidates as emitters for organic light-emitting diodes (OLEDs). Herein a series of green to yellow TADF gold(I) complexes with alkynyl ligands has been developed for the first time. The complexes exhibit high photoluminescence quantum yields (PLQYs) of up to 0.

View Article and Find Full Text PDF

As global change continues to intensify, the mode and rate of nitrogen input from the atmosphere to grassland ecosystems had changed dramatically. Firstly, we conducted a systematic analysis of the literature on the topic of nitrogen deposition impacts over the past 30 years using a bibliometric analysis. A systematic review of the global research status, publication patterns, research hotspots and important literature.

View Article and Find Full Text PDF

A dinuclear Pt(II) compound was reported to exhibit thermally activated delayed fluorescence (TADF); however, the luminescence mechanism remains elusive. To reveal relevant excited-state properties and luminescence mechanism of this Pt(II) compound, both density function theory (DFT) and time-dependent DFT (TD-DFT) calculations were carried out in this work. In terms of the results, the S and T states show mixed intraligand charge transfer (ILCT)/metal-to-ligand CT (MLCT) characters while the T state exhibits mixed ILCT/ligand-to-metal CT (LMCT) characters.

View Article and Find Full Text PDF

Carbene-Au-amide (CMA) type complexes, in which the amide and carbene ligands act as an electron donor (D) and acceptor (A), respectively, can exhibit strong delayed fluorescence (DF) from a ligand to ligand charge transfer (LLCT) excited state. Although the coplanar donor-acceptor (D-A) conformation has been suggested to be a crucial factor favoring radiative decay of the charge-transfer excited state, the geometric structural factor underpinning the excited-state mechanism of CMA complexes remains an open question. We herein develop a new class of carbene-Au-carbazolate complexes by introducing large aromatic substituents onto the carbazolate ligand, the presence of which are conceived to restrict the rotation of the Au-N bond and thus confine a twisted D-A conformation in both ground and excited states.

View Article and Find Full Text PDF

Herein we investigated the luminescence mechanism of one "carbene-metal-amide" copper compound with thermally activated delayed fluorescence (TADF) using density functional theory (DFT)/multireference configuration interaction, DFT, and time-dependent DFT methods with the polarizable continuum model. The experimentally observed low-energy absorption and emission peaks are assigned to the S state, which exhibits clear interligand and partial ligand-to-metal charge-transfer character. Moreover, it was found that a three-state (S, S, and T) model is sufficient to describe the TADF mechanism, and the T state should play a negligible role.

View Article and Find Full Text PDF

Metal-based thermally activated delayed fluorescence (TADF) is conceived to inherit the advantages of both phosphorescent metal complexes and purely organic TADF compounds for high-performance electroluminescence. Herein a panel of new TADF Au(I) emitters has been designed and synthesized by using carbazole and pyrazine-fused nitrogen-heterocyclic carbene (NHC) as the donor and acceptor ligands, respectively. Single-crystal X-ray structures show linear molecular shape and coplanar arrangement of the donor and acceptor with small dihedral angles of <6.

View Article and Find Full Text PDF

The Pd complex PdN3N exhibits an unusual dual emission of room-temperature phosphorescence (RTP) and thermally activated delayed fluorescence (TADF), but the mechanism is elusive. Herein, we employed both density functional theory (DFT) and time-dependent DFT (TD-DFT) methods to explore excited-state properties of this Pd complex, which shows that the S, S, T, and T states are involved in the luminescence. Both the S → T and S → T intersystem crossing (ISC) processes are more efficient than the S fluorescence and insensitive to temperature.

View Article and Find Full Text PDF

A systematic study on applied electric field effects (Eapp) on electron transfer along the peptides is very important for the regulation of electron transfer behaviors so as to realize the functions of proteins. In this work, we computationally investigated the uphill migration behaviors of excess electrons along the peptide chains under Eapp using the density functional theory method. We examined the electronic property changes of the model α-helical oligopeptides, the dynamics behavior of an excess electron along the peptide chains under Eapp opposite to the internal dipole field of peptides.

View Article and Find Full Text PDF

We have employed the QM(CASPT2//CASSCF)/MM method to explore the excited-state isomerization and decay mechanism of a single-bond-rotation locked photoactive yellow protein (PYP) chromophore in wild-type and mutant proteins. The S state is a spectroscopically bright state in the Franck-Condon region. In this state, there exist two excited-state isomerization pathways separately related to the clockwise and anticlockwise rotations of the C=C bond.

View Article and Find Full Text PDF

Migration of an excess electron along linear oligopeptides governed by the external electric field (E ) which is against the inner dipole electric field is theoretically investigated, including the effects of E on the structural and electronic properties of electron migration. Two structural properties including electron-binding ability and the dipole moment of linear oligopeptides are sensitive to the E values and can be largely modulated by E due to the competition of E and the inner electric field and electron transfer caused by E . In the case of low E values, two structural properties decrease slightly while for high E values, the electron-binding ability continually increases strongly, with dipole moments firstly increasing significantly and then increasing more slowly at higher E .

View Article and Find Full Text PDF

The relay stations play a significant role in long-range charge hopping transfer in proteins. Although studies have clarified that many more protein structural motifs can function as relays in charge hopping transfers by acting as intermediate charge carriers, the relaying properties are still poorly understood. In this work, taking a β-turn oligopeptide as an example, we report a dynamic character of a relay with tunable relaying properties using the density functional theory calculations.

View Article and Find Full Text PDF