Somatic cell nuclear transfer (NT) is associated with aberrant changes in epigenetic reprogramming that impede the development of embryos, particularly during zygotic genome activation. Here, we characterized epigenetic patterns of H3K4me3, H3K9me3, and H3K27me3 in mouse NT embryos up to the second cell cycle (i.e.
View Article and Find Full Text PDFWith increasing antibiotic resistance, the use of plant derived antimicrobials (PDAs) has gained momentum. Here, we investigated the toxicity of trans-cinnamaldehyde, eugenol, and carvacrol after intramuscular injection in mice. Two doses of each PDA-300 and 500 mg/kg body weight-and vehicle controls were injected into the muscle of the right hind limb of CD-1 adult mice (n = 8/treatment).
View Article and Find Full Text PDFPluripotent stem cells (PSCs) have been successfully developed in many species. However, the establishment of bovine-induced pluripotent stem cells (biPSCs) has been challenging. Here we report the generation of biPSCs from bovine mesenchymal stem cells (bMSCs) by overexpression of lysine-specific demethylase 4A (KDM4A) and the other reprogramming factors OCT4, SOX2, KLF4, cMYC, LIN28, and NANOG (KOSKMLN).
View Article and Find Full Text PDFDNA methylation undergoes drastic fluctuation during early mammalian embryogenesis. The dynamics of global DNA methylation in bovine embryos, however, have mostly been studied by immunostaining. We adopted the whole genome bisulfite sequencing (WGBS) method to characterize stage-specific genome-wide DNA methylation in bovine sperm, immature oocytes, oocytes matured and , as well as developed single embryos at the 2-, 4-, 8-, and 16-cell stages.
View Article and Find Full Text PDFDosage compensation of the mammalian X chromosome (X) was proposed by Susumu Ohno as a mechanism wherein the inactivation of one X in females would lead to doubling the expression of the other. This would resolve the dosage imbalance between eutherian females (XX) versus male (XY) and between a single active X versus autosome pairs (A). Expression ratio of X- and A-linked genes has been relatively well studied in humans and mice, despite controversial results over the existence of upregulation of X-linked genes.
View Article and Find Full Text PDFOhno's hypothesis predicts that the expression of the single X chromosome in males needs compensatory upregulation to balance its dosage with that of the diploid autosomes. Additionally, X chromosome inactivation ensures that quadruple expression of the two X chromosomes is avoided in females. These mechanisms have been actively studied in mice and humans but lag behind in domestic species.
View Article and Find Full Text PDFGenomic imprinting is an epigenetic phenomenon of differential allelic expression based on parental origin. To date, 263 imprinted genes have been identified among all investigated mammalian species. However, only 21 have been described in sheep, of which 11 are annotated in the current ovine genome.
View Article and Find Full Text PDFDNA methylation is an important epigenetic modification that undergoes dynamic changes in mammalian embryogenesis, during which both parental genomes are reprogrammed. Despite the many immunostaining studies that have assessed global methylation, the gene-specific DNA methylation patterns in bovine preimplantation embryos are unknown. Using reduced representation bisulfite sequencing, we determined genome-scale DNA methylation of bovine sperm and individual in vivo developed oocytes and preimplantation embryos.
View Article and Find Full Text PDFThe regulatory process of naïve-state induced pluripotent stem cell (iPSC) generation is not well understood. Leukemia inhibitory factor (LIF)-activated Janus kinase/signal transducer and activator of transcription 3 (Jak/Stat3) is the master regulator for naïve-state pluripotency achievement and maintenance. The estrogen-related receptor beta () serves as a naïve-state marker gene regulating self-renewal of embryonic stem cells (ESCs).
View Article and Find Full Text PDFHigh hydrostatic pressure (HHP) has been used to pre-condition embryos before essential, yet potentially detrimental procedures such as cryopreservation. However, the mechanisms for HHP are poorly understood. We treated bovine blastocysts with three different HHP (40, 60 and 80 MPa) in combination with three recovery periods (0, 1 h, 2 h post HHP).
View Article and Find Full Text PDFTwenty-six imprinted genes were quantified in bovine in vivo produced oocytes and embryos using RNA-seq. Eighteen were detectable and their transcriptional patterns were: largely decreased (MEST and PLAGL1); first decreased and then increased (CDKN1C and IGF2R); peaked at a specific stage (PHLDA2, SGCE, PEG10, PEG3, GNAS, MEG3, DGAT1, ASCL2, NNAT, and NAP1L5); or constantly low (DIRAS3, IGF2, H19 and RTL1). These patterns reflect mRNAs that are primarily degraded, important at a specific stage, or only required at low quantities.
View Article and Find Full Text PDFThe SWI/SNF (SWItch/Sucrose NonFermentable or BAF, Brg/Brahma-associated factors) complexes are epigenetic modifiers of chromatin structure and undergo progressive changes in subunit composition during cellular differentiation. For example, in embryonic stem cells, esBAF contains Brg1 and Baf155, while their homologs, Brm and Baf170, are present in BAF of somatic cells. In this study, we sought to determine whether Brm and Baf170 play any roles in induced pluripotent stem cell (iPSC) reprogramming by using shRNA-mediated knockdown studies in the mouse model.
View Article and Find Full Text PDFThe mouse is the first species in which genomic imprinting was studied. Imprinting research in farm species has lagged behind owing to a lack of sequencing and genetic background information, as well as long generation intervals and high costs in tissue collection. Since the creation of Dolly, the first cloned mammal from an adult sheep, studies on genomic imprinting in domestic species have accelerated because animals from cloning and other assisted reproductive technologies exhibit phenotypes of imprinting disruptions.
View Article and Find Full Text PDFBackground: During mammalian pre-implantation embryonic development dramatic and orchestrated changes occur in gene transcription. The identification of the complete changes has not been possible until the development of the Next Generation Sequencing Technology.
Results: Here we report comprehensive transcriptome dynamics of single matured bovine oocytes and pre-implantation embryos developed in vivo.
Akt plays an important role in cell growth, proliferation and survival. The specific roles of the three Akt isoforms in somatic cell reprogramming have not been investigated. Here we report that, during iPSC generation, enhanced Akt1 activity promotes complete reprogramming mainly through increased activation of Stat3 in concert with leukemia inhibitory factor (LIF) and, to a lesser extent, through promotion of colony formation.
View Article and Find Full Text PDFThe T-box transcriptional factor (Tbx) family of transcriptional factors has distinct roles in a wide range of embryonic differentiation or response pathways. Tbx1, a T-box transcription factor, is an important gene for the human congenital disorder 22q11.2 deletion syndrome.
View Article and Find Full Text PDFReprogramming somatic cells to pluripotency, especially by the induced pluripotent stem cell (iPSC) technology, has become widely used today to generate various types of stem cells for research and for regenerative medicine. However the mechanism(s) of reprogramming still need detailed elucidation, including the roles played by the leukemia inhibitory factor (LIF) signaling pathway. LIF is central in maintaining the ground state pluripotency of mouse embryonic stem cells (ESCs) and iPSCs by activating the Janus kinase-signal transducer and activator of transcription 3 (JAK-STAT3) pathway.
View Article and Find Full Text PDFAlthough leukemia inhibitory factor (LIF) maintains the ground state pluripotency of mouse embryonic stem cells and induced pluripotent stem cells (iPSCs) by activating the Janus kinase/signal transducer and activator of transcription 3 (Jak/Stat3) pathway, the mechanism remained unclear. Stat3 has only been shown to promote complete reprogramming of epiblast and neural stem cells and partially reprogrammed cells (pre-iPSCs). We investigated if and how Jak/Stat3 activation promotes reprogramming of terminally differentiated mouse embryonic fibroblasts (MEFs).
View Article and Find Full Text PDFThe efficiency of embryonic stem (ES) cell derivation relies on an optimized culture medium and techniques for treating preimplantation stage embryos. Recently, ES cell derivation from the preblastocyst developmental stage was reported by removing the zona pellucida from embryos of the most efficient strain for ES cell derivation (129Sv) during early preimplantation. Here, we showed that ES cells can be efficiently derived and maintained in a modified medium (MEMα), from preblastocysts of a low-efficiency mouse strain (a hybrid consisting of 50% B6, 25% CBA, and 25% DBA).
View Article and Find Full Text PDFLimited studies have been published analyzing the gene expression patterns of cloned pigs. We compared the expression profiles of brain, kidney, and lung tissues, representing each of the three germ layers, of deceased neonatal cloned pigs with those of age-matched controls using a 13K oligonucleotide microarray. We found 42 (0.
View Article and Find Full Text PDFThe goals of the current study were to (1) improve culture conditions and (2) chemical passaging of bovine embryonic stem cell-like (bESC-like) cells. Specifically, the effects of human leukemia inhibitory factor (hLIF), two types of feeders, mouse embryonic fibroblast (MEF) and bovine embryonic fibroblast (BEF), as well as three different enzymatic treatments including Trypsin-EDTA, TrypLE, and Liberase Blendzymes 3 were investigated. The addition of hLIF at 1000 U/mL to the culture medium (41.
View Article and Find Full Text PDFThe present study was conducted to compare bovine embryo developmental quality, after culture in different defined culture media, up to blastocyst stage, and subsequently cultured in media supplemented with beta-mercaptoethanol (beta-ME) following blastocyst vitrification and thawing. In part one of this study, presumptive zygotes were randomly allocated into the following media: (1) CR1, (2) KSOM, (3) SOF, and (4) sequential KSOM-SOF. In the second part of the study, blastocysts derived from four different culture media were subjected to a solid surface vitrification (35% (v/v) ethylene glycol+0.
View Article and Find Full Text PDF