Publications by authors named "Xiubo Du"

Supramolecular protein assemblies have been used as intelligent drug delivery systems that can encapsulate drugs and transport them to specific tissues or cells. However, the known methods for designing supramolecular protein assemblies for transportation across the blood-brain barrier (BBB) remain challenging and inefficient. Herein, we report that the supramolecular recombinant-protein-based strategy enables the biosynthesis and production of a supramolecular protein assembly that is intrinsically capable of crossing the BBB.

View Article and Find Full Text PDF

The pH-dependent assembly of Toll-like receptors (TLRs), which triggers a threshold-like response, is a key principle in immune signaling. While crystallography has revealed the intricate structure of these assembly complexes, the mechanisms underlying their pH dependency remain unclear. Herein, constant pH simulations and metadynamics are employed to investigate the pH-dependent assembly and stability of the TLR3/dsRNA signaling complex.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is one of the most fatal and irreversible neurodegenerative diseases, which causes a huge emotional and financial burden on families and society. Despite the progress made with recent clinical use of inhibitors of acetylcholinesterase and amyloid-β (Aβ) antibodies, the curative effects of AD treatment remain unsatisfactory, which is probably due to the complexity of pathogenesis and the multiplicity of therapeutic targets. Thus, modulating complex pathological networks could be an alternative approach to treat AD.

View Article and Find Full Text PDF

Rectifying the aberrant microenvironment of a disease through maintenance of redox homeostasis has emerged as a promising perspective with significant therapeutic potential for Alzheimer's disease (AD). Herein, we design and construct a novel nanozyme-boosted MOF-CRISPR platform (CMOPKP), which can maintain redox homeostasis and rescue the impaired microenvironment of AD. By modifying the targeted peptides KLVFFAED, CMOPKP can traverse the blood-brain barrier and deliver the CRISPR activation system for precise activation of the Nrf2 signaling pathway and downstream redox proteins in regions characterized by oxidative stress, thereby reinstating neuronal antioxidant capacity and preserving redox homeostasis.

View Article and Find Full Text PDF

Lower selenium levels are observed in Alzheimer's disease (AD) brains, while supplementation shows multiple benefits. Selenoprotein W (SELENOW) is sensitive to selenium changes and binds to tau, reducing tau accumulation. However, whether restoration of SELENOW has any protective effect in AD models and its underlying mechanism remain unknown.

View Article and Find Full Text PDF

Psychoactive substances, including morphine and methamphetamine, have been shown to interact with the classic innate immune receptor Toll-like receptor 4 (TLR4) and its partner protein myeloid differentiation protein 2 (MD2) in a nonenantioselective manner. (-)-Nicotine, the primary alkaloid in tobacco and a key component of highly addictive cigarettes, targets the TLR4/MD2, influencing TLR4 signaling pathways. Existing as two enantiomers, the stereoselective recognition of nicotine by TLR4/MD2 in the context of the innate immune response remains unclear.

View Article and Find Full Text PDF

Given the complexity and heterogeneity of Alzheimer's disease (AD) pathology, targeted monotherapy drugs may not be effective. Therefore, synergistic combination therapy of curcumin and Mito Q was proposed and evaluated in a triple-transgenic AD model mice (3 × Tg-AD mice). The cognitive ability was assessed using behavioral tests and typical pathological changes were observed through Western blotting and histological analysis.

View Article and Find Full Text PDF

: Alzheimer's disease (AD) exerts tremendous pressure on families and society due to its unknown etiology and lack of effective treatment options. Our previous study had shown that Se-methylselenocysteine (SMC) improved the cognition and synaptic plasticity of triple-transgenic AD (3 × Tg-AD) mice and alleviated the related pathological indicators. We are dedicated to investigating the therapeutic effects and molecular mechanisms of SMC on mitochondrial function in 3 × Tg-AD mice.

View Article and Find Full Text PDF

Toll-like receptor 4 (TLR4) is a pivotal innate immune recognition receptor that regulates intricate signaling pathways within the immune system. Neoseptin-3 (Neo-3), a recently identified small-molecule agonist for mouse TLR4/MD2, exhibits chiral recognition properties. Specifically, the L-enantiomer of Neo-3 (L-Neo-3) effectively activates the TLR4 signaling pathway, while D-Neo-3 fails to induce TLR4 activation.

View Article and Find Full Text PDF

In recent years, cannabidiol (CBD), a non-psychotropic cannabinoid, has garnered substantial interest in drug development due to its broad pharmacological activity and multi-target effects. Diabetes is a chronic metabolic disease that can damage multiple organs in the body, leading to the development of complications such as abnormal kidney function, vision loss, neuropathy, and cardiovascular disease. CBD has demonstrated significant therapeutic potential in treating diabetes mellitus and its complications owing to its various pharmacological effects.

View Article and Find Full Text PDF

The pathogenesis of Alzheimer's disease (AD) is highly complex and multifactorial. Compared with Aβ, the pathological changes associated with tau are more related to the clinical symptoms and more indicative of the severity of AD. Studies have shown that the direct interaction between tau and Zn plays an important role in tau toxicity, however, the mechanism by which Zn contributes to tau-induced neurotoxicity is not fully understood.

View Article and Find Full Text PDF

Toll-like receptor 4 (TLR4) is crucial in the innate immune response with species-specific recognition. As a novel small-molecule agonist for mouse TLR4/MD2, Neoseptin 3 fails to activate human TLR4/MD2, while the underlying mechanism is unclear. Herein, molecular dynamics simulations were performed to investigate the species-specific molecular recognition of Neoseptin 3.

View Article and Find Full Text PDF

The pathogenesis of Alzheimer's disease (AD) is closely related to several contributing factors, especially amyloid-β (Aβ) aggregation. Bioorthogonal reactions provide a general, facile, and robust route for the localization and derivatization of Aβ-targeted agents. Herein, a pair of chiral alkyne-containing metallohelices (ΛA and ΔA) were demonstrated to enantioselectively target and modulate Aβ aggregation, which has been monitored in triple-transgenic AD model mice and proved to improve cognitive function.

View Article and Find Full Text PDF

Background: Neurofibrillary tangles comprising hyperphosphorylated tau are vital factors associated with the pathogenesis of Alzheimer's disease (AD). The elimination or reduction of hyperphosphorylated and abnormally aggregated tau is a valuable measure in AD therapy. Esculentoside A (EsA), isolated from Phytolacca esculenta, exhibits pharmacotherapeutic efficacy in mice with amyloid beta-induced AD.

View Article and Find Full Text PDF
Article Synopsis
  • This study examines the effects of Ebselen, a compound previously shown to improve cognition in mice with Alzheimer's, at a lower concentration to avoid toxicity.
  • Behavioral experiments, along with various biochemical assessments, were conducted to evaluate the impact of Ebselen on cognitive function and AD-related pathology in triple-transgenic mice.
  • Results revealed that Ebselen not only enhanced cognitive abilities and reduced toxic protein levels but also repaired mitochondrial function, suggesting that its therapeutic effect may be linked to mitochondrial protection in Alzheimer’s disease.
View Article and Find Full Text PDF

Background: The etiology of Alzheimer's disease (AD) is very complex. Docosahexaenoic acid (DHA) is important in cognitive ability and nervous system development. A limited number of studies have evaluated the efficacy of DHA in the treatment of AD.

View Article and Find Full Text PDF

Herein we present a new way to encapsulate neural stem cells (NSCs) by using hydrogen-bonded organic frameworks (HOFs) to overcome the common causes of low therapeutic efficacy during NSC transplantation: 1) loss of fundamental stem cell properties, "stemness", before transplantation, 2) cytomembrane damage during transplantation, and 3) apoptosis due to oxidative stress after transplantation. Porous carbon nanospheres (PCNs) are doped into the HOF shell during the process of mineralization to endow the cellular exoskeletons with hierarchical hydrogen bonds, and the ability to resist oxidative stress due to the catalase and superoxide dismutase-like activities of PCN. Under NIR-II irradiation, thermal-responsive hydrogen bonds dissociate to release NSCs.

View Article and Find Full Text PDF

Background: Alzheimer's disease (AD) is characterized clinically by cognitive deficits and pathologically by amyloid-β (Aβ) deposition and tau aggregation, as well as the brain atrophy. Esculentoside A (EsA), a neuroprotective saponin, is isolated from Phytolacca esculenta and shows potent health-promoting effects in a variety of experimental models. However, there are minimal reports on the effects of EsA on triple transgenic AD mice.

View Article and Find Full Text PDF

(1) Background: As a natural carbohydrate, sialic acid (SA) is helpful for brain development, cognitive ability, and the nervous system, but there are few reports about the effect of SA on Alzheimer's disease (AD). (2) Method: The present study evaluated the effect of SA on cognitive ability, neuronal activity, Aβ formation, and tau hyperphosphorylation in a double transgenic AD (2×Tg-AD) mice model. The 2×Tg-AD mice were randomly divided into four groups: the AD control group, 17 mg/kg SA-treated AD group, 84 mg/kg SA-treated AD group, and 420 mg/kg SA-treated AD group.

View Article and Find Full Text PDF

Clearance of peripheral amyloid-β (Aβ) has been demonstrated particularly promising for overcoming the blood-brain barrier (BBB) hurdle to remove brain-derived Aβ associated with Alzheimer's disease (AD). However, currently used therapeutic agents targeting peripheral Aβ cannot simultaneously achieve plasma Aβ enrichment and enhanced clearance, which may result in poor bioavailability and rather low efficacy. Moreover, most of therapeutic agents usually promote the unfavorable aggregation of Aβ.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive neurodegenerative disorder that affects 50 million people worldwide. The current medicines have modest benefits in preventing or curing AD. Thus, it is urgent to discover drugs with the potential to change the progression of the disease.

View Article and Find Full Text PDF

Hydrogen exhibits the potential to treat Alzheimer's disease. Stereotactic injection has been previously used as an invasive method of administering active hydrogen, but this method has limitations in clinical practice. In this study, triple transgenic (3×Tg) Alzheimer's disease mice were treated with hydrogen-rich water for 7 months.

View Article and Find Full Text PDF

Endoplasmic reticulum stress (ER stress) plays a critical role in neuronal apoptosis along with the aggravation of Alzheimer's disease (AD). Nuclear receptor peroxisome proliferator-activated receptor gamma (PPARγ) is a ligand-activated transcription factor that is involved in regulating ER stress in Alzheimer's disease (AD), therefore, this protein could be a promising therapeutic target for AD. Vanadium compounds, such as vanadyl acetylacetonate, sodium metavanadate and bis(maltolato)oxovanadium, are well-known as puissant PPARγ modulators.

View Article and Find Full Text PDF

Neuroinflammation plays a pivotal role in the pathophysiology of neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. During brain neuroinflammation, activated microglial cells resulting from amyloid-beta (Aβ) overload trigger toxic proinflammatory responses. Bis(ethylmaltolato)oxidovanadium (BEOV) (IV), an important vanadium compound, has been reported to have anti-diabetic, anti-cancer, and neuroprotective effects, but its anti-inflammatory property has rarely been investigated.

View Article and Find Full Text PDF