IEEE Trans Cybern
January 2024
In this study, we establish a new design methodology of granular models realized by augmenting the existing numeric models through analyzing and modeling their associated prediction error. Several novel approaches to the construction of granular architectures through augmenting existing numeric models by incorporating modeling errors are proposed in order to improve and quantify the numeric models' prediction abilities. The resulting construct arises as a granular model that produces granular outcomes generated as a result of the aggregation of the outputs produced by the numeric model (or its granular counterpart) and the corresponding error terms.
View Article and Find Full Text PDFDesigning effective and efficient classifiers is a challenging task given the facts that data may exhibit different geometric structures and complex intrarelationships may exist within data. As a fundamental component of granular computing, information granules play a key role in human cognition. Therefore, it is of great interest to develop classifiers based on information granules such that highly interpretable human-centric models with higher accuracy can be constructed.
View Article and Find Full Text PDFIEEE Trans Cybern
July 2022
Rule-based fuzzy models play a dominant role in fuzzy modeling and come with extensive applications in the system modeling area. Due to the presence of system modeling error, it is impossible to construct a model that fits exactly the experimental evidence and, at the same time, exhibits high generalization capabilities. To alleviate these problems, in this study, we elaborate on a realization of granular outputs for rule-based fuzzy models with the aim of effectively quantifying the associated modeling errors.
View Article and Find Full Text PDFInformation granulation and degranulation play a fundamental role in granular computing (GrC). Given a collection of information granules (referred to as reference information granules), the essence of the granulation process (encoding) is to represent each data (either numeric or granular) in terms of these reference information granules. The degranulation process (decoding) that realizes the reconstruction of original data is associated with a certain level of reconstruction error.
View Article and Find Full Text PDFIn this article, we are concerned with the formation of type-2 information granules in a two-stage approach. We present a comprehensive algorithmic framework which gives rise to information granules of a higher type (type-2, to be specific) such that the key structure of the local granular data, their topologies, and their diversities become fully reflected and quantified. In contrast to traditional collaborative clustering where local structures (information granules) are obtained by running algorithms on the local datasets and communicating findings across sites, we propose a way of characterizing granular data (formed) by forming a suite of higher type information granules to reveal an overall structure of a collection of locally available datasets.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
September 2020
In this article, we propose a design and evaluation framework of granular neural networks realized in the presence of information granules. Neural networks realized in this manner are able to process both nonnumerical data, such as information granules as well as numerical data. Information granules are meaningful and semantically sound entities formed by organizing existing knowledge and available experimental data.
View Article and Find Full Text PDFIn this paper, we elaborate on a new design approach to the development and analysis of granular input spaces and ensuing granular modeling. Given a numeric model (no matter what specific design methodology has been used to construct it and what architecture has been adopted), we form a granular input space through allocating a certain level of information granularity across the input variables. The formation of granular input space helps us gain a better insight into the ranking of input variables with respect to their precision (the variables with a lower level of information granularity need to be specified in a precise way when estimating the inputs).
View Article and Find Full Text PDFIEEE Trans Cybern
December 2017
Granular computing (GrC) has emerged as a unified conceptual and processing framework. Information granules are fundamental constructs that permeate concepts and models of GrC. This paper is concerned with a design of a collection of meaningful, easily interpretable ellipsoidal information granules with the use of the principle of justifiable granularity by taking into consideration reconstruction abilities of the designed information granules.
View Article and Find Full Text PDF