Sensitive, rapid and convenient sensing of 2,6-pyridinedicarboxylic acid (DPA, a biomarker for ) is crucial for the screening and diagnosis of anthrax. Metal organic framework (MOF)-based sensors are very promising for sensing DPA; however, the design and construction of high-performance sensors with high specificity and sensitivity is still challenging. In this work, a novel luminescent carboxylate MOF (TTCA-Zn) was assembled and employed specifically for the recognition of DPA.
View Article and Find Full Text PDFSpectrochim Acta A Mol Biomol Spectrosc
December 2024
Excessive use of gentamicin sulfate can cause severe nephrotoxicity and ototoxicity, abnormal levels of Fe intake can also cause serious damage to body. Therefore, establishing a fast and accurate detection method for the above-mentioned substances is of great significance. However, traditional detection methods such as high-performance liquid chromatography still have certain problems such as high cost and complex operation.
View Article and Find Full Text PDFBackground: Although umbilical cord mesenchymal stem cell (UCMSC) infusion has been proposed as a promising strategy for the treatment of acute lung injury (ALI), the parameters of UCMSC transplantation, such as infusion routes and doses, need to be further optimized.
Methods: In this study, we compared the therapeutic effects of UCMSCs transplanted via intravenous injection and intratracheal instillation on lipopolysaccharide-induced ALI using a rat model. Following transplantation, levels of inflammatory factors in serum; neutrophils, total white blood cells, and lymphocytes in bronchoalveolar lavage fluid (BALF); and lung damage levels were analyzed.
Ethnopharmacological Relevance: Marveled at the discovery of artemisinin, the world's expectations for traditional Chinese medicine are rising. He's Yangchao formula (HSYC) is a traditional Chinese herbal formula with the effects of tonifying kidney and essence, and reconciling yin and yang. It has been clinically proven to have anti-ovarian aging effects.
View Article and Find Full Text PDFThe use of solid fuels for heating and cooking in rural Northeast China has led to severe indoor metal element pollution in particulate matter (PM), posing a direct threat to human health and creating immense pressure on the sustainability of residential environments. To investigate the levels, sources, and potential health hazards of indoor metal element pollution in this region, we conducted a year-long sampling and monitoring campaign in actual residential settings and used ICP-OES to measure six metal elements (Mn, Cr, Zn, Cu, Pb, and Ni). This study's findings reveal that indoor metal element pollution levels in PM (33,513.
View Article and Find Full Text PDFJ Zhejiang Univ Sci B
March 2023
Endometrial cancer is the most common gynecological malignancy, affecting up to 3% of women at some point during their lifetime (Morice et al., 2016; Li and Wang, 2021). Based on the pathogenesis and biological behavioral characteristics, endometrial cancer can be divided into estrogen-dependent (I) and non-estrogen-dependent (II) types (Ulrich, 2011).
View Article and Find Full Text PDFUnderstanding the mechanisms for cellular aging is a fundamental question in biology. Normal red blood cells (RBCs) survive for approximately 100 days, and their survival is likely limited by functional decline secondary to cumulative damage to cell constituents, which may be reflected in altered metabolic capabilities. To investigate metabolic changes during RBC aging, labeled cell populations were purified at intervals and assessed for abundance of metabolic intermediates using mass spectrometry.
View Article and Find Full Text PDFIn this study, a rhodamine-acetylferrocene conjugate of RBFc was synthesized and then characterized using spectroscopy and single-crystal analysis. The chemosensor RBFc exhibited a marked colour change from colourless to pink after binding to Cu ions. Importantly, under the presence of the other competing cations in aqueous solution, only Cu ions caused spirolactam ring opening in rhodamine B in RBFc, resulting in an enhanced absorbance of ultraviolet light spectra and fluorescence spectra, as well as obvious shifts in cyclic voltammetry curves and differential pulsed voltammetry curves.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
February 2020
The three-dimensional (3D) crystal structures of the GAF3 domain of cyanobacteriochrome Slr1393 ( PCC6803) carrying a phycocyanobilin chromophore could be solved in both 15- dark-adapted state, Pr, λ = 649 nm, and 15- photoproduct, Pg, λ = 536 nm (resolution, 1.6 and 1.86 Å, respectively).
View Article and Find Full Text PDFIntroduction: The efficacy of chemotherapeutic agents in killing cancer cells is mainly attributed to the induction of apoptosis. However, the tremendous efforts on enhancing apoptosis-related mechanisms have only moderately improved lung cancer chemotherapy, suggesting that other cell death mechanisms such as necroptosis could be involved. In this study, we investigated the role of the necroptosis pathway in the responsiveness of nonsmall cell lung cancer (NSCLC) to chemotherapy.
View Article and Find Full Text PDFA series of lanthanide diphosphonates, namely Ln(HL)(HO) (Ln = Nd 1, Eu 2, Tb 3 and Er 4), have been synthesized from a semirigid diphosphonate ligand, (5-methyl-1,3-phenylene)bis(methylene)bisphosphonic acid (HL). These lanthanide diphosphonates have been systematically characterized by using powder and single-crystal X-ray diffraction, elemental analysis, TGA, IR, UV-vis absorption and luminescence techniques. The single-crystal XRD measurements revealed that these compounds all have two-dimensional layered crystal structures.
View Article and Find Full Text PDFBackground: Escaping cell death pathways is an important event during carcinogenesis. We previously identified anti-TNFα-induced apoptosis (ATIA, also known as vasorin) as an antiapoptotic factor that suppresses reactive oxygen species (ROS) production. However, the role of vasorin in lung carcinogenesis has not been investigated.
View Article and Find Full Text PDFThe precise spatiotemporal regulation of protein synthesis is essential for many complex biological processes such as memory formation, embryonic development, and tumor formation. Current methods used to study protein synthesis offer only a limited degree of spatiotemporal control. Optogenetic methods, in contrast, offer the prospect of controlling protein synthesis noninvasively within minutes and with a spatial scale as small as a single synapse.
View Article and Find Full Text PDFBackground: The Traditional Chinese Medicine, arsenic trioxide (ATO, AsO) could inhibit growth and induce apoptosis in a variety of solid tumor cells, but it is severely limited in the treatment of glioma due to its poor BBB penetration and nonspecifcity distribution in vivo.
Purpose: The objective of this study was encapsulating ATO in the modified PAMAM den-drimers to solve the problem that the poor antitumor effect of ATO to glioma, which provide a novel angle for the study of glioma treatment.
Methods: The targeting drug carrier (RGDyC-mPEG-PAMAM) was synthesized based on Arg-Gly-Asp (RGDyC) and αvβ3 integrin targeting ligand, and conjugated to PEGylated fifth generation polyamidoamine dendrimer (mPEG-PAMAM).
Nature provides an array of proteins that change conformation in response to light. The discovery of a complementary array of proteins that bind only the light-state or dark-state conformation of their photoactive partner proteins would allow each light-switchable protein to be used as an optogenetic tool to control protein-protein interactions. However, as many photoactive proteins have no known binding partner, the advantages of optogenetic control-precise spatial and temporal resolution-are currently restricted to a few well-defined natural systems.
View Article and Find Full Text PDFA facile reversed-phase microemulsion method was used to synthesize shell-core nanospheres of SiO@RCs (SiO-encapsuled rare-earth metal complexes). β-d-Galactose was then grafted onto the surfaces of the nanospheres through the copper(I)-catalyzed azide-alkyne cycloaddition click reaction for targeted delivery. The chemical characteristics and surface profiles of the nanocarriers were investigated by Fourier transform infrared spectroscopy, dynamic light scattering, transmission electron microscopy, and scanning electron microscopy.
View Article and Find Full Text PDFMesoporous silica core-shell nanospheres encapsulating a rare-earth metal complex (RC) were first synthesised through a facile W/O (water in oil) inverse microemulsion method. In order to achieve targeted complex delivery, folic acid (FA) was used as the targeting component due to its high affinity for over-expressed folate receptors (FRs) in cancer cells. The RC@SiO-FA nanospheres were characterised via ultraviolet-visible light absorption spectroscopy (UV-vis spectroscopy), dynamic light scattering (DLS), scanning electron microscopy (SEM) and transmission electron microscopy (TEM).
View Article and Find Full Text PDFGlioma is the most common primary malignant brain tumour and the effect of chemotherapy is hampered by low permeability across the blood-brain-barrier (BBB). Borneol is a time-honoured 'Guide' drug in traditional Chinese medicine and has been proved to be capable of promoting free drugs into the brain efficiently, but there are still risks that free drugs, especially anti-glioma drugs, may be disassembled and metabolised before penetrating the BBB and caused the whole brain distribution. The purpose of this paper was to investigate whether borneol intervention could facilitate the BBB penetration and assist glioma treatment by combining with doxorubicin (DOX) loaded PAMAM dendrimers drug delivery system modified with Angiopep-2 (a ligand of the low-density lipoprotein receptor-related protein, which overexpress both in the BBB and gliomas).
View Article and Find Full Text PDFMucin 1 (MUC1) is a tumor antigen that is aberrantly overexpressed in various cancers, including lung cancer. Our previous in vitro studies showed that MUC1 facilitates carcinogen-induced EGFR activation and transformation in human lung bronchial epithelial cells (HBECs), which along with other reports suggests an oncogenic property for MUC1 in lung cancer. However, direct evidence for the role of MUC1 in lung carcinogenesis is lacking.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a complex neurodegenerative disease with cellular and molecular mechanisms yet to be fully described. Mutations in a number of genes including SOD1 and FUS are associated with familial ALS. Here we report the generation of induced pluripotent stem cells (iPSCs) from fibroblasts of familial ALS patients bearing SOD1 and FUS mutations, respectively.
View Article and Find Full Text PDFEffective targeting drug delivery system for glioma treatment is still greatly challenged by the existence of the blood-brain barrier (BBB) and the intracranial overspreading of anti-tumor drug. Herein, we presented a dual-functional glioma targeting delivery of doxorubicin based on the PAMAM G5 dendrimer, modified with folic acid (FA) to target tumor cell, also borneol (BO), a well known safe material derived from traditional Chinese medicine, to facilitate the BBB permeability and reduce the toxicity of naked PAMAM. The intracranial transportation and glioma targeting ability were evaluated on the BBB model and C6 glioma cells in vitro.
View Article and Find Full Text PDFXeroderma pigmentosum (XP) is a group of genetic disorders caused by mutations of XP-associated genes, resulting in impairment of DNA repair. XP patients frequently exhibit neurological degeneration, but the underlying mechanism is unknown, in part due to lack of proper disease models. Here, we generated patient-specific induced pluripotent stem cells (iPSCs) harboring mutations in five different XP genes including XPA, XPB, XPC, XPG, and XPV.
View Article and Find Full Text PDF