Epilepsy is a chronic, non-communicable disease caused by paroxysmal abnormal synchronized electrical activity of brain neurons, and is one of the most common neurological diseases worldwide. Electroencephalography (EEG) is currently a crucial tool for epilepsy diagnosis. With the development of artificial intelligence, multi-view learning-based EEG analysis has become an important method for automatic epilepsy recognition because EEG contains difficult types of features such as time-frequency features, frequency-domain features and time-domain features.
View Article and Find Full Text PDFThe performance of a convolutional neural network (CNN) model is influenced by several factors, such as depth, width, network structure, size of the receptive field, and feature map scaling. The optimization of the best combination of these factors poses as the main difficulty in designing a viable architecture. This article presents an analysis of key factors influencing network performance, offers several strategies for constructing an efficient convolutional network, and introduces a novel architecture named TbsNet (thin-branch structure network).
View Article and Find Full Text PDFPeerJ Comput Sci
March 2023
The residual structure has an important influence on the design of the neural network model. The neural network model based on residual structure has excellent performance in computer vision tasks. However, the performance of classical residual networks is restricted by the size of receptive fields, channel information, spatial information and other factors.
View Article and Find Full Text PDF