Influence maximization (IM) aims to identify highly influential nodes to maximize influence spread in a network. Previous research on the IM problem has mainly concentrated on single-layer networks, disregarding the comprehension of the coupling structure that is inherent in multilayer networks. To solve the IM problem in multilayer networks, we first propose an independent cascade model (MIC) in a multilayer network where propagation occurs simultaneously across different layers.
View Article and Find Full Text PDFHypernetwork is a useful way to depict multiple connections between nodes, making it an ideal tool for representing complex relationships in network science. In recent years, there has been a marked increase in studies on hypernetworks; however, the comparison of the difference between two hypernetworks has received less attention. This paper proposes a hyper-distance (HD)-based method for comparing hypernetworks.
View Article and Find Full Text PDFAnalyzing and characterizing the differences between networks is a fundamental and challenging problem in network science. Most previous network comparison methods that rely on topological properties have been restricted to measuring differences between two undirected networks. However, many networks, such as biological networks, social networks, and transportation networks, exhibit inherent directionality and higher-order attributes that should not be ignored when comparing networks.
View Article and Find Full Text PDFQuantifying structural dissimilarities between networks is a fundamental and challenging problem in network science. Previous network comparison methods are based on the structural features, such as the length of shortest path and degree, which only contain part of the topological information. Therefore, we propose an efficient network comparison method based on network embedding, which considers the global structural information.
View Article and Find Full Text PDFProgress has been made in understanding how temporal network features affect the percentage of nodes reached by an information diffusion process. In this work, we explore further: which node pairs are likely to contribute to the actual diffusion of information, i.e.
View Article and Find Full Text PDFAppl Math Comput
September 2018
The interaction between disease and disease information on complex networks has facilitated an interdisciplinary research area. When a disease begins to spread in the population, the corresponding information would also be transmitted among individuals, which in turn influence the spreading pattern of the disease. In this paper, firstly, we analyze the propagation of two representative diseases ( and ) in the real-world population and their corresponding information on Internet, suggesting the high correlation of the two-type dynamical processes.
View Article and Find Full Text PDFResearch on the interplay between and has attracted much attention in recent years. In this work, we propose an information-driven adaptive model, where disease and disease information can evolve simultaneously. For the information-driven adaptive process, susceptible (infected) individuals who have abilities to recognize the disease would break the links of their infected (susceptible) neighbors to prevent the epidemic from further spreading.
View Article and Find Full Text PDF