Perturbations in mitochondrial membrane stability lead to cytochrome c release and induce caspase-dependent apoptosis. Using synthetic smart chemicals with changeable physicochemical properties to interfere the mitochondrial membrane stability has not yet been reported. Here we show that a thermosensitive anchor-polymer-peptide conjugate (anchor-PPC) destabilizes mitochondrial membranes upon molecule changes from hydrophilic to hydrophobic, which consequently induces apoptosis in a spatiotemporally controlled manner and acts as an antitumor pharmaceutical.
View Article and Find Full Text PDFA laccase catalyzed colorimetric biosensing approach is promising for the detection of pheochromocytoma biomarkers, yet suffers from the poor stability of enzymes and high cost for production. Here we report for the first time an easy to produce, cheap, stable and reliable laccase-mimicking CuCoFe-LDHzyme, which can catalyze the oxidation of pheochromocytoma biomarkers to form a chromogenic product for smartphone-based colorimetric detection.
View Article and Find Full Text PDF